scholarly journals Methane emission and methanotrophic activity in groundwater-fed drinking water treatment plants

2020 ◽  
Vol 20 (3) ◽  
pp. 819-827 ◽  
Author(s):  
Edmundas Maksimavičius ◽  
Peter Roslev

Abstract Groundwater for drinking water production may contain dissolved methane (CH4) at variable concentrations. Most of this important greenhouse gas is often vented to the atmosphere during primary aeration and gas stripping processes at drinking water treatment plants (DWTPs). However, limited information exists regarding emission and fate of methane at many groundwater-fed DWTPs. This study estimates emission of methane from 1,004 DWTPs in Denmark and includes data from 3,068 groundwater wells. The fate of methane and occurrence of methane oxidizing bacteria in DWTPs was examined, including the potential role in ammonia removal. Methane emission from Danish DWTPs was estimated to be 1.38–2.95 × 10−4 Tg CH4/y which corresponds to 0.05–0.11% of the national anthropogenic methane emission. Trace levels of methane remained in the drinking water after primary aeration and entered the sand filters as a potential microbial substrate. Methanotrophic bacteria and active methane oxidation was always detected in the sand filters at groundwater-fed DWTPs. Methanotrophic consortia isolated from DWTP sandfilters were inoculated into laboratory-scale sand filters and the activity confirmed that methanotrophic consortia can play a role in the removal of ammonia via assimilation and co-oxidation. This suggests a potential for facilitating the removal of inorganic constituents from drinking water using methane as a co-substrate.

2002 ◽  
Vol 2 (5-6) ◽  
pp. 193-199
Author(s):  
M.J. Yu ◽  
H.M. Cho ◽  
J.Y. Koo ◽  
I.S. Han ◽  
E.M. Gwon ◽  
...  

Recently, Seoul city has tried to modify and upgrade the existing facilities and utilities and to improve the established water treatment plants, instead of application of a new treatment process. These efforts have finally lowered the turbidity of finished water below 0.1NTU. Small lab-scale and pilot-scale experiments have been conducted and they have provided optimum parameters for the design and operation of drinking water treatment plants. In addition, quantitative and/or trace analysis technologies developed for monitoring water quality of effluent from unit processes and automization of facilities, have contributed to the improvement of turbidity in drinking water. The Kueui water treatment plant, one of the drinking water treatment plants in Seoul, produces finished water with 0.08 NTU. It results from the operators' continuous endeavor to lower the turbidity in a scale of 0.01 NTU. The data for 12 months indicated that turbidity of settled water was less than 1.16 NTU and that of filtered water was less than 0.12 NTU for 95% of the period. Sedimentation basins and sand filters satisfy the recommended turbidity criteria, 2 NTU and 0.3 NTU, respectively. Also Kueui water treatment plant has focused on the control of organic matters to decrease in DBPs and on the removal of microorganisms.


1986 ◽  
Vol 21 (3) ◽  
pp. 447-459 ◽  
Author(s):  
K.J. Roberts ◽  
R.B. Hunsinger ◽  
A.H. Vajdic

Abstract The Drinking Water Surveillance Program (DWSP), developed by the Ontario Ministry of the Environment, is an assessment project based on standardized analytical and sampling protocol. This program was recently instituted in response to a series of contaminant occurrences in the St. Clair-Detroit River area of Southwestern Ontario. This paper outlines the details and goals of the program and provides information concerning micro-contaminants in drinking water at seven drinking water treatment plants in Southwestern Ontario.


Author(s):  
Samantha Donovan ◽  
Ariel Jasmine Atkinson ◽  
Natalia Fischer ◽  
Amelia E Taylor ◽  
Johann Kieffer ◽  
...  

PolyDiallyldimethyl Ammonium Chloride (PolyDADMAC) is the most commonly used polymer at drinking water treatment plants and has the potential to form nitrosamines, like N-Nitrosodimethylamine (NDMA), if free polymer is present...


2000 ◽  
Vol 46 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Pierre Payment ◽  
Aminata Berte ◽  
Michèle Prévost ◽  
Bruno Ménard ◽  
Benoît Barbeau

A 300-km portion of the Saint Lawrence hydrological basin in the province of Québec (Canada) and 45 water treatment plants were studied. River water used by drinking water treatment plants was analyzed (6-L sample volumes) to determine the level of occurrence of bacterial indicators (total coliforms, fecal coliforms, and Clostridium perfringens) and pathogens (Giardia lamblia, Cryptosporidium, human enteric viruses). Pathogens and bacterial indicators were found at all sites at a wide range of values. Logistic regression analysis revealed significant correlations between the bacterial indicators and the pathogens. Physicochemical and treatment practices data were collected from most water treatment plants and used to estimate the level of removal of pathogens achieved under cold (0°C-4°C) and warm (20°C-25°C) water temperature conditions. The calculated removal values were then used to estimate the annual risk of Giardia infection using mathematical models and to compare the sites. The estimated range of probability of infection ranged from 0.75 to less than 0.0001 for the populations exposed. Given the numerous assumptions made, the model probably overestimated the annual risk, but it provided comparative data of the efficacy of the water treatment plants and thereby contributes to the protection of public health.Key words: public health, drinking water, health risk, pathogen occurrence.


2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


Sign in / Sign up

Export Citation Format

Share Document