scholarly journals Role of typical pipes in disinfection chemistry within drinking water distribution system

Author(s):  
Kai Ma ◽  
Xiazhen Jia ◽  
Hongda Han ◽  
Lin Zhao ◽  
Dongmei Fan ◽  
...  

Abstract Deep insight into the forces driving chloramine decay in different material of pipes is the key to take sound actions to cope with the pipe water quality deterioration. By using the newly developed RTCDM (refined Total Chloramine Decay Model) and pipe section reactor, the role of four typical pipes in disinfection chemistry was qualitatively and quantitatively compared, and the mechanism of pipe wall mediated chloramine decay was further described. As for the four typical pipes studied, the ability of deteriorating water quality, especially for accelerating TCR decay was in the order of cast iron pipe > steel pipe > cement lined ductile iron pipe > polypropylene-random pipe. Cast iron pipe, cement lined ductile iron pipe, and steel pipe with long serving age are characterized by one or two driven forces leading to TCR decay. Aged cast iron pipe could consume chloramine by Fe(0) and microbe (especially for nitrifier) spreading over the inner wall. Aged steel pipe is characterized by aggressive electrochemical corrosion and weak nitrification. Lime and gypsum leaching is the main cause, and nitrification/denitrification may also occur in aged cement lined ductile iron pipe. Polypropylene-random pipe has minimum effect on disinfection chemistry. This knowledge is of value in speculating the reasons leading to TCR loss in the full scale distribution system.

2012 ◽  
Vol 12 (5) ◽  
pp. 580-587 ◽  
Author(s):  
Stephen Mounce ◽  
John Machell ◽  
Joby Boxall

Safe, clean drinking water is a foundation of society and water quality monitoring can contribute to ensuring this. A case study application of the CANARY software to historic data from a UK drinking water distribution system is described. Sensitivity studies explored appropriate choice of algorithmic parameter settings for a baseline site, performance was evaluated with artificial events and the system then transferred to all sites. Results are presented for analysis of nine water quality sensors measuring six parameters and deployed in three connected district meter areas (DMAs), fed from a single water source (service reservoir), for a 1 year period and evaluated using comprehensive water utility records with 86% of event clusters successfully correlated to causes (spatially limited to DMA level). False negatives, defined by temporal clusters of water quality complaints in the pilot area not corresponding to detections, were only approximately 25%. It was demonstrated that the software could be configured and applied retrospectively (with potential for future near real time application) to detect various water quality event types (with a wider remit than contamination alone) for further interpretation.


2015 ◽  
Vol 42 (4) ◽  
pp. 250-258 ◽  
Author(s):  
Megan J. Liu ◽  
Stephen Craik ◽  
David Z. Zhu

Predicting disinfectant concentrations in water distribution systems using water quality models requires the input of the wall decay coefficient of the disinfectant. In this study, field water sampling data was integrated with network hydraulic and water quality model simulations of a section of the municipal water distribution system in the City of Edmonton, composed of predominantly cast iron piping, to determine a wall decay coefficient for combined chlorine (chloramine). Unique combined chlorine wall decay coefficients that provided the best fit of model-predicted chlorine concentrations to the field data were determined at two temperatures. Using the determined wall decay coefficients, the water quality model can be used to predict combined chlorine concentrations.


2018 ◽  
Vol 7 (2) ◽  
pp. 83
Author(s):  
Ruilian Li ◽  
Ming-qing Feng ◽  
Xiao-hui Bai

The pipelines corrosion can result discolor and particle increase in tap water and the complaints from the consumers. It also has the economic and hydraulic impacts for the replacement of broken pipes and fouling of corroded pipes. This paper aimed to investigate the effect of processed drinking water on metal pipe corrosion in water distribution system and the relations between the bulking water quality and pipe corrosion. It was found that there is a close relation between iron corrosion and water quality parameters in water distribution pipelines. It was shown that lower pH and alkalinity can increase the corrosion rate, while higher chlorides and sulfate may cause pitting corrosion. DOC in pipe water would be beneficial for microbial induced corrosion.


Author(s):  
Valeria Mirela Brezoczki ◽  
◽  
Gabriela Maria Filip ◽  

This paper presents the analysis of the quality indicator of a subterranean raw water source, captured in Crăciunesti, Sighetu Marmatiei, followed by the description of the technological flow of capturing and chlorinating water with the aim of making it drinkable, and the analysis of the obtained values of the physical, chemical and bacteriological indicators. The period within which water quality was monitored for this paper covers four months (December 2016, March, April and May 2017). Within this period the analyses regarding water quality control were carried out by the laboratory of the Water Treatment Baia Mare. The analysis of the obtained results highlighted a series of problems regarding the existence of certain indicators/parameters with values above the legally admissible threshold with regard to water quality. The manganese found in raw water exceeds the admissible threshold by 160%, in December 2016, and by 120% in March 2017, but it is within limits during the months of April and May. The occurrence of colonies developed at 37 °C and 22°C in the raw water requires chemical treatment of the raw water aimed at disinfecting it. The parameters of drinking water correspond to the values admissible through the laws in force, the water being distributed to the consumers through the Drinking water distribution system in Sighetu Marmatiei.


Sign in / Sign up

Export Citation Format

Share Document