scholarly journals Hourly water demand forecasting using a hybrid model based on mind evolutionary algorithm

Author(s):  
Haidong Huang ◽  
Zhixiong Zhang ◽  
Zhenliang Lin ◽  
Shitong Liu

Abstract A hybrid model based on mind evolutionary algorithm is proposed to predict hourly water demand. In the hybrid model, hourly water demand data are first reconstructed to generate appropriate samples so as to represent the characteristics of time series effectively. Then, mind evolutionary algorithm is integrated into a back propagation neural network (BPNN) to improve prediction performance. To investigate the application potential of the proposed model in hourly water demand forecasting, real hourly water demand data were applied to evaluate its prediction performance. Besides, the performance of the proposed model was compared with a traditional BPNN model and another hybrid model where genetic algorithm (GA) is used as an optimization algorithm for BPNN. The results show that the proposed model has a satisfactory prediction performance in hourly water demand forecasting. On the whole, the proposed model outperforms all other models involved in the comparisons in both prediction accuracy and stability. These findings suggest that the proposed model can be a novel and effective tool for hourly water demand forecasting.

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 507 ◽  
Author(s):  
Francesca Gagliardi ◽  
Stefano Alvisi ◽  
Zoran Kapelan ◽  
Marco Franchini

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1683
Author(s):  
Shan Wu ◽  
Hongquan Han ◽  
Benwei Hou ◽  
Kegong Diao

Short-term water demand forecasting plays an important role in smart management and real-time simulation of water distribution systems (WDSs). This paper proposes a hybrid model for the short-term forecasting in the horizon of one day with 15 min time steps, which improves the forecasting accuracy by adding an error correction module to the initial forecasting model. The initial forecasting model is firstly established based on the least square support vector machine (LSSVM), the errors time series obtained by comparing the observed values and the initial forecasted values is next transformed into chaotic time series, and then the error correction model is established by the LSSVM method to forecast errors at the next time step. The hybrid model is tested on three real-world district metering areas (DMAs) in Beijing, China, with different demand patterns. The results show that, with the help of the error correction module, the hybrid model reduced the mean absolute percentage error (MAPE) of forecasted demand from (5.64%, 4.06%, 5.84%) to (4.84%, 3.15%, 3.47%) for the three DMAs, compared with using LSSVM without error correction. Therefore, the proposed hybrid model provides a better solution for short-term water demand forecasting on the tested cases.


Author(s):  
P. Vijayalakshmi ◽  
K. Muthumanickam ◽  
G. Karthik ◽  
S. Sakthivel

Adenomyosis is an abnormality in the uterine wall of women that adversely affects their normal life style. If not treated properly, it may lead to severe health issues. The symptoms of adenomyosis are identified from MRI images. It is a gynaecological disease that may lead to infertility. The presence of red dots in the uterus is the major symptom of adenomyosis. The difference in the extent of these red dots extracted from MRI images shows how significant the deviation from normality is. Thus, we proposed an entroxon-based bio-inspired intelligent water drop back-propagation neural network (BIWDNN) model to discover the probability of infertility being caused by adenomyosis and endometriosis. First, vital features from the images are extracted and segmented, and then they are classified using the fuzzy C-means clustering algorithm. The extracted features are then attributed and compared with a normal person’s extracted attributes. The proposed BIWDNN model is evaluated using training and testing datasets and the predictions are estimated using the testing dataset. The proposed model produces an improved diagnostic precision rate on infertility.


Sign in / Sign up

Export Citation Format

Share Document