scholarly journals Removal performance and mechanism of typical amino acids in water by the peroxymonosulfate/Fe3O4 nanoparticles

Author(s):  
Yuye Luo ◽  
Cheng Liu ◽  
Meiqi Zhao ◽  
Tariq Mehmood

Abstract Dissolved organic nitrogen (DON) as precursors of nitrogenous disinfection byproducts (N-DBPs) has become a serious issue for drinking water treatment. Here, Fe3O4/peroxymonosulfate (PMS) system was used to examine the amino acid removal and formation of N-DBPs in the system and the corresponding mechanisms. Results showed a remarked variation in removal efficiency of three typical amino acids, i.e., glutamate (78%), histidine (53%) and phenylalanine (27%) in Fe3O4/PMS system at optimum conditions (0.1 g/L Fe3O4, 1.5 mM PMS, 1 h). Notably, Fe3O4/PMS treatment led to dichloroacetonitrile (DCAN) formation caused by the chlorination of glutamate, phenylalanine and histidine being reduced by 53.3%, 9.7% and 41.9%, respectively. The degradation and subsequent N-DBPs formation in the Fe3O4/PMS system mainly depended on the types and properties of the amino acids. The formation of dichloroacetamide (DCAcAm) exhibited different trends, which may be due to the different R group structure of the three amino acids and the special aromaticity of imidazole ring in the histidine side chain that facilitates its quick electrophilic substitution and ring-opening reaction. This study highlights that the Fe3O4/PMS system is a promising strategy to remove DON and efficiently eliminate N-DBPs formation in the drinking water treatment process depending on the amino acid type.

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


1999 ◽  
Vol 48 (5) ◽  
pp. 177-185 ◽  
Author(s):  
O. Griffini ◽  
M. L. Bao ◽  
D. Burrini ◽  
D. Santianni ◽  
C. Barbieri ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


Sign in / Sign up

Export Citation Format

Share Document