Impact of Nuclear Power Plants of the Pwr-Type on River Water Quality (Case-Report of the River Meuse)

1982 ◽  
Vol 14 (4-5) ◽  
pp. 199-214 ◽  
Author(s):  
W J Masschelein ◽  
J Genot

Five years' experience with data of the TAILFER plant located 48 km downstream of the nuclear power site of GHOOZ is reported so as to provide guidelines for the examination of future nuclear cases. The factors considered are: the reduction in water flow and thermal impacts, the discharge of nuclear active effluents and the physico-chemical impact of enrichment in salts and suspended matter. Primary importance must be given to the proportion of the discharges in terms of added (instantaneous) volume activities. In the case of inland rivers the most active effluents, including the particular isotope tritium, are contained in a reduced volume (1400 m3/l000 MWe), and are best evacuated to other sites. Guidelines to check the river water quality are based on the measurement of 3H, total γ, and especifically, Go60, Cs13737, Mn54, Co58, and Cs134. Flow measurement and river transfer modelling must be part of the study of the impact as illustrated by this case-report.

2021 ◽  
Vol 7 (6) ◽  
pp. 6247-6261
Author(s):  
Xiaoqing Liu ◽  
Juanfen Wang

As water pollution is more and more serious, ArcGIS is proposed to explore the impact of environmental and ecological factors on water. Taking the river water quality as the research object, this paper simulates and analyzes the endogenous and non-point source pollution and water quality through indoor physical model experiment, hydrological and water quality numerical model and water quality numerical model, and analyzes the impact of different environmental changes on river water quality and pollution sources from micro and macro perspectives. The main contents include: experimental study on the influence mechanism of overlying water velocity, disturbance and water temperature on sediment endogenous release, construction and simulation of watershed non-point source pollution model, construction and simulation of watershed river water quality model, as well as the impact of environmental change on river water quality and quantitative analysis of river pollution sources.


2013 ◽  
Vol 13 (6) ◽  
pp. 474-482 ◽  
Author(s):  
Akmal Mahazar ◽  
Mohammad Shuhaimi-O ◽  
Ahmad Abas Kutty ◽  
Mohamed Nor Mohamed De

2002 ◽  
Vol 46 (6-7) ◽  
pp. 105-112 ◽  
Author(s):  
M. Spanou ◽  
D. Chen

This paper presents the application of the object-oriented framework SMILE to the management of flows and water quality in the Upper Mersey river catchment. The design river flows are those exceeded for 95% of the time, and are estimated applying alternative methods. The influence of compensation reservoirs, surface-water abstractions, and continuous discharges on low river flows is quantified. The annual licensed abstraction volumes are further reviewed. The monitored river water quality is classified using the River Ecosystem scheme. The compliance of the sewage treatment works and trade effluents with their discharge-consent limits is also assessed. The impact of effluents on the variation of river water quality is evaluated through Monte Carlo simulations at the discharge points. The points where the downstream water quality fails to comply with proposed River Quality Objectives are identified. The consent limits of the corresponding discharges are assessed, and changes to the BOD and total ammonia limits are suggested.


Author(s):  
Monjur Morshed ◽  
Muzaffer Hosen ◽  
Md. Asaduzzaman

As a developing country, industrialization is rapidly growing up in Bangladesh. Most of the cases, the industrialization process don’t considering any impact on environmental body. In this study, the impact of unplanned industrialization on the surface water is the main focus. In between several resources, the water quality of the Sitalakhya River is our study area. Quality of the Sitalakhya River water is getting polluted day by day through industrial effluents and household wastewater, lube oil and oil spillage around the operation of river ports. The Sitalakhya river water quality analysis is considered between 1975 to 2018, qualitative and quantitative results for pH, DO and BOD were analyzed and also trends of these parameters were also analyzed. Day by day river water quality going far away from EQS value, which is significantly harmful to flora fauna. In this circumstance, industrial effluent and other environmental impacts from unplanned industrialization is main goal of this study. This study shows, how unplanned industrialization can damage an environmental system which is very harmful to our entire ecological cycle. If cannot control this unplanned industrialization, water body will damage and all related ecosystem will be effected.


Author(s):  
Lina Bagdžiūnaitė-Litvinaitienė ◽  
Andrius Litvinaitis ◽  
Laurynas Šaučiūnas

Increasing migration of nutrients in the river water is a major factor in determining the quality of river water due to anthropogenic activities. In order to preserve the good water quality in rivers and other surface water bodies, it is necessary to take preventive measures that can be scientific water quality research and analysis. According to research carried out in kind, the article analyses the Anykščiai city as point source pollution, and the influence of it to the water quality of Šventoji river. Also, based on the statistical information a nutrient concentrations trend analysis of the meteorological and hydrological con-ditions influence was carried out. Investigations were carried out in July-September of 2016. Concentrations of ammonium (NH4-N), nitrite (NO2-N), nitrate (NO3-N), phosphate (PO4-P) and dissolved oxygen (O2) was analysed. In order to determine the impact of point source pollution on river water quality, the changes in concentration before and beyond Anykščiai city were evaluated, according to the meteorological and hydrological conditions. It was found that total nitrogen (Nb) and total phos-phorus (Pb) concentrations during the investigation period respectively, increases in 6% and 8%.


Sign in / Sign up

Export Citation Format

Share Document