Predicted Changes in Water Quality after Elimination of Storm Runoff into the Urban Lake and Canals of Hamburg

1982 ◽  
Vol 14 (4-5) ◽  
pp. 315-322
Author(s):  
H Caspers

Storm-water overflows from the combined sewer system into the Alster Lake in Hamburg and its canals have resulted in heavy eutrophication. Predictions were made, based on the Water Quality Index, concerning the degree of improvement to be expected from various restoration measures. Elimination of sewage input alone should not have a noticeable effect because much nutrient material is deposited on the bottom of the lake and canals. Calculations indicate that reduction of sewage overflow together with sediment removal would improve the appearance of the Alster system, eliminate the danger of fish kills, and prevent algal “blooms” in summer.

2002 ◽  
Vol 46 (6-7) ◽  
pp. 19-26 ◽  
Author(s):  
T. Frehmann ◽  
I. Nafo ◽  
A. Niemann ◽  
W.F. Geiger

For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB®/SIMULINK® simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 61-67 ◽  
Author(s):  
E. Jacobs ◽  
J. W. van Sluis

The surface water system of Amsterdam is very complicated. Of two characteristic types of water systems the influences on water and sediment quality are investigated. The importance of the sewer output to the total loads is different for both water systems. In a polder the load from the sewers is much more important than in the canal basin. Measures to reduce the emission from the sewers are much more effective in a polder. The effect of these measures on sediment quality is more than the effect on water quality. Some differences between a combined sewer system and a separate sewer system can be found in sediment quality.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 155-162 ◽  
Author(s):  
H. F. Gast ◽  
R. E. M. Suykerbuyk ◽  
R. M. M. Roijackers

From 1985 to 1987, effects of sewer discharges on communities of phyto- and Zooplankton in receiving waters have been studied. Locations all over The Netherlands have been selected. The results were related to the type of sewer system, the discharges and the characteristics of the receiving water. Results were compared with those from samples taken from a corresponding water not influenced by sewer discharges, the reference water. Often either phyto- or Zooplankton communities could be used succesfully to describe the short-and medium-term effects of the discharges on the quality of the involved habitats. Plankton communities could also indicate permanent effects due to higher saprobic levels in the receiving water compared to the reference water: an obvious result of urban storm water discharges. In small and medium-sized stagnant waters, particularly in the immediate vicinity of the overflows, effects on plankton communities were more pronounced compared to large and running waters. Combined sewer system overflows (CSO) often proved to affect plankton communities more severely than separate sewer system discharges (SSD), except for some locations in industrial areas.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 77-85
Author(s):  
Roelof H. Aalderink

A simple model, based on tanks in series, for the estimation of mean annual loads and frequency distributions of loads from combined sewer systems is presented. The input data, dry weather flow, dry weather quality, and storm water quality are estimated from treatment plant influent data. Two similar methods for the estimation of flow-average storm water quality were tested by using treatment plant influent data generated by the model in comparison with the model input. Both methods are based on daily mass balances, but differ slightly with respect to the averaging procedures used. The performance of both methods is about the same. They show a small bias, but the variability introduced is small when compared with the variation occurring in real storm water quality data. Application of one of the methods on field data revealed no distinct relationships between the flow-averaged storm water quality concentration and the dry weather period or the total daily rain depth. By combination of continuous and Monte Carlo simulation techniques the model can be used to estimate mean annual loads and frequency distribution of loads from combined sewer overflows. For the extreme events a large 90 % confidence interval was found due to the large variations in storm water quality.


1986 ◽  
Vol 13 (6) ◽  
pp. 631-638 ◽  
Author(s):  
Denis Couillard ◽  
Yves Lefebvre

This study fits into the scheme of research work being carried out to control stormwater rejects. Its main objective is to represent, with the help of a water quality index, the deterioration of the quality of the Saint-Charles River, caused by the combined sewer overflows of Quebec City, Canada, during a rainstorm. The proposed quality index has been applied to evaluate the recreational use of the river.The overall results obtained in the case of a 20 mm rain show index values that characterize a water of poor quality. Moreover, within the region of the combined sewer overflow, a minimum delay of 24 h is necessary to allow the water quality of the Saint-Charles River to return to the level where it was at the dry period, which generally has a value less than the critical value for recreative use. Key words: water quality index, urban runoff, water pollution, nonpoint source of pollution, water quality, water use, environmental impact, pollution control.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 343-350 ◽  
Author(s):  
J. Boxall ◽  
W. Shepherd ◽  
I. Guymer ◽  
K. Fox

Combined sewer systems contain a large number of organic and inorganic pollutants from both domestic and industrial sources. These pollutants are often retained within the combined sewer system for significant lengths of time before entering sewage treatment works, or being spilt to a watercourse via a combined sewer overflow (CSO) during storm conditions. Currently little knowledge exists concerning the effects of in sewer processes on pollutants. Understanding of in-sewer processes is important for the effective and efficient design of treatment works and CSO chambers and for impact assessments on receiving waters. A series of studies covering storm and dry weather flow conditions were undertaken with the aim of investigating the nature of in-sewer processes. These studies consisted of marking a body of water with a fluorescent tracer. The tracer was then monitored at a series of downstream sites, and discrete samples collected from the body of water as it progressed through the sewer. The samples were analysed for water quality parameters and these results investigated in tandem with the detailed hydraulic information gained through the tracer studies. The results highlight the hydraulic differences between storm and dry weather conditions such as increased travel times and mixing under storm conditions. The Advection Dispersion Equation (ADE) and Aggregated Dead Zone (ADZ) model parameters have been quantified for the tracer data. The ADE mixing coefficient is shown to increase by an order of magnitude for storm conditions. The ADZ dispersive fraction parameter is shown to be approximately constant with flow. Chemical reactions and decay within the sewer system were found to be consistent with oxygen limitation.


Sign in / Sign up

Export Citation Format

Share Document