Stabilization of Organic Carbon and Nitrogen in Consolidating Benthal Deposits

1985 ◽  
Vol 17 (6-7) ◽  
pp. 929-940 ◽  
Author(s):  
C. W. Bryant ◽  
L. G. Rich

The objective of this research was to develop and validate a predictive model of the benthal stabilization of organic carbon and nitrogen in deposits of waste activated sludge solids formed at the bottom of an aerated water column, under conditions of continual deposition. A benthal model was developed from a one-dimensional, generalized transport equation and a set of first-order biological reactions. For model verification, depth profiles of the major interstitial carbon and nitrogen components were measured from a set of deposits formed in the laboratory at 20°C and a controlled loading rate. The observed sequence of volatile acid utilization in each benthal deposit was that which would be predicted by the Gibbs free energies of the individual degradation reactions and would be controlled by the reduction in interstitial hydrogen partial pressure with time. Biodegradable solids were solubilized rapidly during the first three weeks of benthal retention, but subsequent solubilization occurred much more slowly. The benthal simulation effectively predicted the dynamics of consolidating, organic deposits. Simulation of organic loading rates up to 250 g BVSS/(m2 day) indicated that the stabilization capacity of benthal deposits was far above the range of organic loading rates currently used in lagoon design.

1990 ◽  
Vol 22 (3-4) ◽  
pp. 179-186 ◽  
Author(s):  
S. Karnchanawong ◽  
C. Polprasert

Experiments on attached-growth circulating reactor (AGCR) were conducted to investigate its efficiencies on organic carbon and nitrogen removal (through denitrification). A laboratory-scale AGCR, made of serpentine channel with a total length of 180.0 m, was fed with a synthetic wastewater at the chemical oxygen demand (COD) and total nitrogen (TN) loading rates of 3.56-10.16 and 0.30 - 0.91 g/(m2.d), respectively. The reactor effluent was recycled back to the influent feeding point and the dissolved oxygen (DO) concentrations along the channel length were controlled by means of air diffusion. It was found that the COD loading rate of 5 g/(m2. d) corresponding to the TN loading rate of 0.54 g/(m2.d) gave the optimal COD and TN removal rates of 4.8 and 0.43 g/(m2.d), respectively. The overall AGCR performance was limited by the nitrification efficiency at the high TN loading rates. The biofilm accumulation and thickness were found to be relatively high in the first-half portion of the channel length where carbon oxidation and denitrification were predominant. The second-half portion where nitrification mainly occurred had much less biofilm accumulation and thickness.


1997 ◽  
Vol 36 (1) ◽  
pp. 43-50 ◽  
Author(s):  
G. Pastorelli ◽  
G. Andreottola ◽  
R. Canziani ◽  
E. de Fraja Frangipane ◽  
F. De Pascalis ◽  
...  

A flexible pilot plant, fed with primary settled wastewater, was used to study (1) organic carbon and nitrification in a two(three)-stage continuous-flow aerobic process and (2) organic carbon and nitrogen removal in a heterotrophic moving-bed sequencing batch biofilm reactor (MBSBBR) for denitrification and in a continuous-flow autotrophic moving-bed biofilm reactor (MBBR) for nitrification. In both experiments the same polyethylene biofilm carriers were used. Filtered COD removal rates in aerobic conditions appear to be proportional to the corresponding loading rates up to 8 gCOD m−2 d−1. Nitrification tests, performed in oxygen limiting conditions and ammonia limiting conditions, showed that the reaction rate was nearly first order with respect to dissolved oxygen due to liquid film diffusion. Denitrification tests, performed without external carbon sources, showed that the denitrification rate never fell below 0.3 gNO3−-N m−2 d−1 even at very low biodegradable filtered COD loading rates.


2010 ◽  
Vol 13 (3) ◽  
pp. 54-66
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

This study was performed to evaluate the efficiency of tapioca processing wastewater treatment using aerobic biofilter with variety of biofilter media: coir, coal, PVC plastic and Bio - Ball BB15 plastic. Research results in the lab demonstrated all four aerobic biofilter models processed can treated completely N and COD which COD reached 90-98% and N reached 61-92%, respectively, at the organic loading rates in range of 0.5, 1, 1.5 and 2 kgCOD/m3.day. The results identified coir filter was the best in four researched materials with removal COD and specific substract utilization rate can reach 98%, and 0.6 kg COD/kgVSS.day. Research results open the new prospects for the application of the cheap materials, available for wastewater treatment.


Wetlands ◽  
2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Yu An ◽  
Yang Gao ◽  
Xiaohui Liu ◽  
Shouzheng Tong ◽  
Bo Liu ◽  
...  

1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


Sign in / Sign up

Export Citation Format

Share Document