Parameters Influencing Sludge Thickening by Dissolved Air Flotation

1993 ◽  
Vol 28 (1) ◽  
pp. 87-90 ◽  
Author(s):  
M. Sugahara ◽  
S. Oku

The purpose of this study was to investigate factors influencing sludge thickening in the dissolved air flotation process. Attention focused on the alteration of sludge characteristics as a result of coagulation and aeration. Batch thickening experiments showed that both coagulation and aeration enhanced sludge thickening. The most important parameter influencing sludge thickening appeared to be sludge particle size; larger particle sizes produced higher sludge solids concentrations in the float.

2017 ◽  
Vol 4 (1) ◽  
pp. 22 ◽  
Author(s):  
MohammadBagher Miranzadeh ◽  
Ali Atamaleki ◽  
Gholamreza Mostafaii ◽  
Hossein Akbari ◽  
Leila Iranshahi ◽  
...  

2003 ◽  
Vol 48 (3) ◽  
pp. 89-96
Author(s):  
M. Ljunggren ◽  
L. Jönsson

This study presents practical implications for particle separation in Dissolved Air Flotation (DAF). The objectives were to localise where particles are separated from the water phase and to determine what particles, in terms of size, are removed by the DAF-process. Both pilot- and full-scale plants were investigated. Particle sizes were analysed with a light-blocking particle counter and an optical borescope was used for visualisation of particle-bubble aggregates. It was found that particles are preferably separated upstream in the process, i.e. close to the contact zone. Furthermore, separation efficiency for particles increased with increasing particle size.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 137-147 ◽  
Author(s):  
Harish Arora ◽  
James R. DeWolfe ◽  
Ramon G. Lee ◽  
Thomas P. Grubb

Dissolved air flotation was evaluated using pilot and bench tests for water clarification and sludge thickening. A DAF pilot study was conducted on one water source with low turbidity, high color, high organic content and algal blooms. For this water, coagulation with alum, cationic polymer and pH around 6.1 resulted in removal of turbidity, color and algae. THMFP and TOC were removed by approximately 25 and 50 percent, respectively. A river water source was used in another pilot study to identify limits on source water turbidity for the DAF process. Tests conducted with induced high turbidity values resulted in filtered water quality with low turbidity and complete removal of color. TOC was removed by approximately 35 percent, however, inconclusive results were obtained for THMFP removal. Based on these pilot test, DAF is a viable clarification process, especially for source waters with low turbidity (infrequent spikes upto 100 NTU), high algal blooms and high color. Bench-scale DAF assisted sludge thickening resulted in performance similar to gravity thickeners. High recycle ratios (around or greater than 100 percent) were required for effective sludge thickening.


2015 ◽  
Vol 10 (1) ◽  
pp. 133-142 ◽  
Author(s):  
H.-B. Ding ◽  
M. Doyle ◽  
A. Erdogan ◽  
R. Wikramanayake ◽  
P. Gallagher

This paper presents two types of dissolved air flotation application together with biosorption (the ‘Captivator® system’) as primary treatments. In the first instance, the Captivator® system is the sole primary treatment for a new plant installation and helps to gain 65% more biogas while requiring only 44% of aeration for COD oxidation, compared to a conventional process with a primary clarifier. In the second application, the Captivator® system is used to enhance the existing primary treatment for plant capacity expansion. With digested anaerobic sludge recycled as an additional adsorbent, the Captivator® system in the second application increases the biogas yield by 52% and only generates 59% excess sludge. Overall, the Captivator® system would help WWTPs to approach energy neutrality by diverting more organics for biogas production and reducing the energy requirements for aeration. In addition, it would help to reduce the installation footprint for primary treatment and save considerable capital cost by eliminating the sludge thickening process.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 41-46 ◽  
Author(s):  
M. Han ◽  
Y. Park ◽  
J. Lee ◽  
J. Shim

Although dissolved air flotation (DAF) has been successfully adopted for water and wastewater treatment, the fundamental characteristics of the process have not been fully investigated. According to recent theoretical work on DAF, bubble size is one of the most important factors that affect the efficiency of the process, with better removal efficiency when the sizes of both bubbles and particles are similar. In this study, a newly developed particle counter method (PCM) was introduced to measure particle sizes. To confirm its usefulness, the results were compared with those from image analysis. Then, using PCM, the size of bubbles in DAF was measured under various pressure conditions which are known to affect the bubble size the most (from 2 to 6 atmospheres). The bubble size decreased as the pressure increased up to a pressure of 3.5 atmospheres. Above this critical pressure, the bubble size did not decrease with further increases in pressure. According to these experimental results, it is not only costly, but also unnecessary, to maintain a pressure above 3.5 atmospheres if the goal is only to generate smaller bubbles.


2006 ◽  
Vol 6 (1) ◽  
pp. 95-103 ◽  
Author(s):  
D.H. Kwak ◽  
S.J. Kim ◽  
H.J. Jung ◽  
C.H. Won ◽  
S.B. Kwon ◽  
...  

The raw water characteristics of a water treatment plant in Korea are mainly dependent on two major factors: the clay particles attributed to rainfall and blue-green algae in reservoirs. In this work, zeta potential and particle size distributions of clay and algae particles, which are the important parameters affecting their removal efficiency, were measured to investigate the behavior and removal characteristics of particles under various conditions. The results showed that the zeta potential of blue-green algae was more sensitive to treatment conditions than clay, and it fluctuated highly with coagulant dosage, suggesting that the control of zeta potential is important for effective removal of algae particles. On the other hand, the range of particle size distribution that remained from the preliminary sedimentation tank was generally smaller than for flotation. However, the zeta potential of the remaining particles was either close to the isoelectric point or positive, and the particles were not so hard to remove for that reason. In the final analysis, for simultaneous removal of clay and algae particles, a sufficient zeta potential difference must be formed not only for algae particles but also for small clay particles from the sedimentation tank in the dissolved air flotation process.


1997 ◽  
Vol 36 (12) ◽  
pp. 223-230 ◽  
Author(s):  
Hak Chung Tai ◽  
Yeon Kim Doo

An experimental study was conducted to identify the effect of each operating variable on the liquid-solids separation efficiency using a bench scale batch flotation system and waste activated sludge. Interpretation of the experimental results was performed by use of the characteristic constants of an empirical equation proposed. Minimum A/S ratio for reliable operation of dissolved air flotation should be greater than 0.009. However, unstable sludge rising took place at the initial clarification stage due to excessive shear and turbulence when the pressure was high in spite of high A/S ratio. The efficiency increased as the A/S ratio increased except a case of high pressure coupled with high A/S ratio. High recirculation flow with a saturator pressure less than 5 atm is recommended for stable and efficient operation. The pore size of a diffuser did not affect the thickening efficiency significantly. Concentration gradient of the float solids became larger as flotation continued. Skimming of a top layer or a long skimming interval is desirable for high thickening efficiency.


Sign in / Sign up

Export Citation Format

Share Document