Removal efficiency of the constructed wetland wastewater treatment system at Bainikeng, Shenzhen

1995 ◽  
Vol 32 (3) ◽  
pp. 31-40 ◽  
Author(s):  
Yang Yang ◽  
Zhencheng Xu ◽  
Kangping Hu ◽  
Junsan Wang ◽  
Guizhi Wang

In this paper, three years study on a constructed wetland wastewater treatment system at Bainikeng, Shenzhen, is reviewed and summarized. The wetland system under study occupies an area of 8400m2, with a design flow of 3100 m3 per day. The study was conducted to understand removal efficiencies of constructed wetland systems for municipal wastewaters from small or medium scale towns in the sub-tropics. Such parameters as biological oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus in the influent and effluent of the wetland system are examined, and their removal rates are determined. It is shown that the system is very effective in removing organic pollutants and suspended solids and its removal efficiency is much similar to those of the constructed wetlands at Tennessee Valley Authority (TVA) (Choate et al., 1990) while better than those of conventional secondary biochemical treatments.

Author(s):  
Midona DAPKIENĖ ◽  
Nomeda SABIENĖ ◽  
Algirdas RADZEVIČIUS

Growing volume of washed vegetables in Europe and Lithuania means that more drinking water is consumed and more wastewater is produced. Farmers, who engage in washing vegetables, face the problems of wastewater treatment, wastewater storage and utilization. Wastewater released to the environment from their farms would meet hygiene and environmental protection criteria. The aim of the study was to assess the contamination of the root vegetable wash water and to evaluate the possiblity of cleaning of wastewater in the land-based treatment system consisting of one constructed wetland and two biological ponds. The contamination of wastewater, produced by washed root vegetables, in Lithuanian farms was measured according to suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen and total phosphorus. Pollution of the wash water and wastewater was evaluated comparing the mean values with legislative limit values and with typical sewage contamination values. In all farms wastewater of initial root vegetables washing was treated in settling basins. Wastewater of one carrots washing farm was treated in the land-based wastewater treatment system consisting of surface flow constructed wetland and two biological ponds. Efficiency of the wastewater treatment in this system was according to suspended solids 90%, BOD7 – 97%, CODCr – 92%, total nitrogen – 98% , total phosphorus – 97%. The result shows, that the natural wastewater treatment system is suitable for farms, that wash and produce vegetables, but before releasing wastewater to the environment, it has to be settled.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1654
Author(s):  
Jung-Jeng Su ◽  
Shih-Torng Ding ◽  
Hsin-Cheng Chung

The conventional piggery wastewater treatment system is mainly a manual operation system which may be well managed by experienced technicians. However, the pig farmers must simultaneously manage their pig production as well as their on-farm wastewater treatment facility. For this study, Internet of Things (IoT) applications were introduced on a 1000-pig farm to establish a smart piggery wastewater treatment system, which was upgraded from a self-developed fully automatic wastewater treatment system. Results showed that the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) of the piggery wastewater based on the sensor data before and after water quality sensor calibration were 89%, 94%, and 93%, and 94%, 86%, and 96%, respectively. Moreover, the removal efficiency of BOD, COD, and SS of the piggery wastewater based on the analytical chemical data before and after water quality sensor calibration were 93%, 89%, and 97%, and 94%, 86%, and 96%, respectively. Experimental results showed that overall removal efficiency of BOD, COD, and SS of the piggery wastewater after water quality sensor calibration were 94%, 86–87%, and 96%, respectively. Results revealed that the farm-scale smart piggery wastewater treatment system was feasible to be applied and extended to more commercial pig farms for establishing sustainable pig farming.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 256
Author(s):  
Kulyash Meiramkulova ◽  
Davud Devrishov ◽  
Mikhail Zhumagulov ◽  
Sholpan Arystanova ◽  
Zhaskhaiyr Karagoishin ◽  
...  

Industrial activities produce a variety of pollutants that may not be easily treated using centralized wastewater treatment systems based on a single treatment unit. The variability of the pollutants brings the importance of industrial-specific integrated wastewater treatment plants such as integrated membrane filtration systems. However, the performance of a membrane filtration process can be highly affected by the presence of high amounts of suspended particles in the raw wastewater. Therefore, proper selection of a pre-treatment unit prior to a membrane filtration wastewater treatment system is a key aspect of its performance. This study investigated the performance of an integrated membrane filtration treatment system connected to an electrochemical process (pre-treatment) on the purification of a poultry slaughterhouse wastewater toward achieving a high-quality effluent. The industrial-scale treatment plant installed at the Izhevsk Production Corporative (PC) poultry farm in Kazakhstan is composed of an electrochemical, ultrafiltration (UF), and reverse osmosis (RO) as the main treatment units. From the analysis results, the electrochemical pre-treatment unit was observed to be highly effective for the removal of some physicochemical parameters such as turbidity, color, total suspended solids, total iron, aluminum, chemical oxygen demand, and biochemical oxygen demand; with removal efficiency ranging from 71 to 85%. The low removal efficiency of the pre-treatment system was also observed from free and total chlorine, nitrites, nitrates, phosphates, and ammonium nitrogen; with removal efficiency ranging from 4 to 45%. While in general, the overall treatment train was observed to be highly efficient for some physicochemical parameters such as turbidity, color, total suspended solids, as well as chemical and biochemical oxygen demand; maintaining almost 100% removal efficiency throughout the study period. Also, the high removal efficiency of the electrochemical pre-treatment processes led to a relatively low rate of cake formation on the membrane filters.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 341-354 ◽  
Author(s):  
C.M. Lee ◽  
C.C. Wang

The aim of this study is to isolate denitrifying bacteria utilizing ɛ-caprolactam as the substrate, from a polyacrylonitrile fibre manufactured wastewater treatment system. The aim is also to compare the performance of PAN (polyacrylonitrile) mixed bacteria cultures acclimated to ɛ-caprolactam and isolated pure strain for treating different initial e-caprolactam concentrations from synthetic wastewater under anoxic conditions. The result showed that the PAN mixed bacteria cultures acclimated to e-caprolactam could utilize 1538.5 mg/l of ɛ-caprolactam as a substrate for denitrification. Sufficient time and about 2200 mg/l of nitrate were necessary for the complete ɛ-caprolactam removal. Paracoccus thiophilus was isolated from the polyacrylonitrile fibre manufactured wastewater treatment system and it could utilize 1722.5 mg/l of ɛ-caprolactam as a substrate for denitrification. About 3500 mg/l of nitrate was necessary for the complete removal of ɛ-caprolactam. When the initial ɛ-caprolactam concentration was below 784.3 mg/l, the removal efficiency of ɛ-caprolactam by Paracoccus thiophilus was better than that for the PAN mixed bacteria cultures. The growth of Paracoccus thiophilus was better. However, when the initial ɛ-caprolactam concentration was as high as 1445.8 mg/l, both the ɛ-caprolactam removal efficiency by Paracoccus thiophilus and Paracoccus thiophilus specific growth rate were similar to the PAN mixed bacteria cultures.


2019 ◽  
Vol 80 (11) ◽  
pp. 2079-2090 ◽  
Author(s):  
Rajiv Ranjan ◽  
Lokendra Kumar ◽  
P. C. Sabumon

Abstract The paper describes briefly the process performance and the reuse potential of a laboratory scale wastewater treatment system. The treatment involves enhanced primary treatment of Vellore Institute of Technology (VIT) campus sewage using ferric chloride as a coagulant, anaerobic digestion of coagulated organics, and biofilm aerobic process. The treated effluent after disinfection (using sunlight and chlorine) was used for irrigation of Tagetes erecta (marigold) plants and the plant growth parameters were evaluated for a life span of 3 months. In the primary treatment, an optimum ferric chloride dose of 30 mg/L could remove turbidity, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and bacterial count (Escherichia coli) of 69%, 60%, 77%, and 55%, respectively. The coagulated organics could digest in a 25 L anaerobic reactor effectively with methane content in biogas varied between 50 and 60% and enhanced volatile suspended solids (VSS) reduction up to 70%. Sunlight based photo-oxidation followed chlorine disinfection saved 50% of the chlorine dose required for disinfection and treated effluent was fit for reuse. The results of growth parameters for Tagetes erecta plants indicate that anaerobically digested sludge is an excellent soil conditioner cum nutrient supplier. The results of this study exhibit a promising reuse potential of a decentralized wastewater treatment system and needs to be promoted for field scale applications.


Sign in / Sign up

Export Citation Format

Share Document