ASBR treatment of low strength industrial wastewater at psychrophilic temperatures

1997 ◽  
Vol 36 (2-3) ◽  
pp. 337-344 ◽  
Author(s):  
Gouranga C. Banik ◽  
Richard R. Dague

Anaerobic treatment of dilute wastewater was studied using three laboratory-scale anaerobic sequencing batch reactors (ASBR), each with an active volume of six (6) liters. The reactors were fed a synthetic substrate made from non-fat dry milk supplemented with nutrients and trace metals. The COD and BOD5 of the feed was 600 mg/l and 285 mg/l, respectively. Steady-state performance data were collected at reaction temperatures of 25, 20, 17.5, 15, 12.5, 10, 7.5 and 5°C over a period of two years. Hydraulic retention times (HRT) were maintained at 24, 16, 12, 8 and 6 hours. Results showed that the ASBR process was capable of achieving in excess of 90% soluble COD and BOD5 removal at temperatures of 25°C and 20°C at all HRTs. At the low temperature of 5°C and the six hour HRT, soluble COD and BOD5 removals were 62% and 75%, respectively. At the intermediate temperatures from 20°C down to 5°C and HRTs between 24 and 6 hours, removal of soluble organics ranged between 62 and 90 % for COD and 75 and 90 % for BOD5. In all cases, SRT were high enough to maintain good performance. Substrate utilization rates and half-velocity constants were also determined at all temperatures. The temperature correction coefficient was found to be 1.08 in the temperature range from 25°C to 7.5°C which follows the Q10 or Van't Hoff's rule.

2015 ◽  
Vol 71 (8) ◽  
pp. 1128-1135 ◽  
Author(s):  
Sevcan Aydın ◽  
Bahar Ince ◽  
Orhan Ince

In this study, we aimed to develop an understanding of the triple effects of sulfamethoxazole–erythromycin–tetracycline (ETS) and the dual effects of sulfamethoxazole–tetracycline (ST), erythromycin–sulfamethoxazole (ES) and erythromycin–tetracycline (ET) on the anaerobic treatment of pharmaceutical industry wastewater throughout a year of operation. Concentrations of the antibiotics in the influent were gradually increased until the metabolic collapse of the anaerobic sequencing batch reactors (SBRs), which corresponded to ETS (40 + 3 + 3 mg/L) and ST (25 + 2.5 mg/L), ET (4 + 4 mg/L) and ES (3 + 40 mg/L). Acetate accumulation in the anaerobic SBRs, acetoclastic activity of the anaerobic sludge taken from different antibiotic feeding stages and also expression of acetyl-coA synthetase from the acetoclastic methanogenic pathway on the mRNA level were assessed. The results indicated that, while acetate accumulation and decrease of acetoclastic activity were observed after stage 3 in the ST and ES reactors, and stage 7 in the ETS and ET reactors, the expression of acetyl-coA synthetase was mostly decreased in the last stages in all SBRs, in which antibiotic mixture feeding was terminated. It might be speculated that acetoclastic methanogens have an important role in acetate degradation by expressing acetyl-coA synthetase.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Dong-sheng Shen ◽  
Li-jia Wang ◽  
Hong-zhen He ◽  
Mei-zhen Wang

Bioaugmentation with degrading bacteria can improve the treatment of nicotine-containing tobacco industrial wastewater effectively. However, the transient and extremely high feeding of pollutants may compromise the effectiveness of the bioaugmented reactors. The effect of transient nicotine shock loads on the performance ofPseudomonassp. HF-1 bioaugmented SBRs were studied. The results showed that, under 500–2500 mg/L of transient nicotine shocks, all the reactors still could realize 100% of nicotine degradation in 4 days of recovery, while the key nicotine degradation enzyme HSP hydroxylase increased in expression. Though the dramatic increase of activities of ROS, MDA, SOD, and CAT suggested that transient nicotine shock loads could induce oxidative stress on microorganisms in activated sludge, a decrease to control level demonstrated that most of the microorganisms could resist 500–1500 mg/L of transient nicotine shock under the protection from strain HF-1. After 8 cycles of recovery, high ROS level and low TOC removal in high transient shock reactors implied that 2000–2500 mg/L of transient nicotine shock was out of its recovery of strain HF-1 bioaugmented system. This study enriched our understanding on highly efficient nicotine-degrading strain bioaugmented system, which would be beneficial to tobacco waste or wastewater treatment in engineering.


2012 ◽  
Vol 66 (8) ◽  
pp. 1722-1727 ◽  
Author(s):  
Lin Liu ◽  
Da-Wen Gao ◽  
Hong Liang

We have investigated the effect of sludge discharge location on the steady-state aerobic granules in sequencing batch reactors (SBRs). Two SBRs were operated concurrently with the same sludge retention time using sludge discharge ports at: (a) the reactor bottom in R1; and (b) the reactor middle-lower level in R2. Results indicate that both reactors could maintain sludge granulation and stable operation, but the two different sludge discharge methods resulted in significantly different aerobic granule characteristics. Over 30 days, the chemical oxygen demand (COD) removal of the two reactors was maintained at similar levels (above 96%), and typical bioflocs were not observed. The average aerobic granule size in R2 was twice that in R1, as settling velocity increased in proportion to size increment. Meanwhile, the production yields of polysaccharide and protein content in R2 were always higher than those in R1. However, due to mass transfer limitations and the presence of anaerobes in the aerobic granule cores, larger granules had a tendency to disintegrate in R2. Thus, we conclude that a sludge discharge port situated at the reactor bottom is beneficial for aerobic granule stability, and enhances the potential for long-term aerobic granule SBR operation.


2006 ◽  
Vol 54 (2) ◽  
pp. 199-206 ◽  
Author(s):  
A. Benítez ◽  
A. Ferrari ◽  
S. Gutierrez ◽  
R. Canetti ◽  
A. Cabezas ◽  
...  

Wastewater from dairy industries, characterized by its high COD content and relative high COD/TKN ratio, requires post-treatment after anaerobic treatment to complete the removal of organic matter and nutrients. Due to its simplicity, robustness and low maintenance costs, sequencing batch reactors (SBR) result in an attractive system, especially in case of small dairy industries in order to comply with the emission standards. The goal of this work was to determine the operational parameters, optimize the performance, and study the stability of the microbial population of a SBR system for the post-treatment of an anaerobic pond effluent. High and stable removal of COD and TKN was achieved in the reactor, which can easily be set up in dairy industries. An active nitrifying population was selected during reactor operation and maintained relatively stable, while the heterotrophic (total and denitrifying) communities were more unstable and susceptible to changes in the operating conditions.


2012 ◽  
Vol 49 (1-3) ◽  
pp. 307-316 ◽  
Author(s):  
Mohammad Rafiee ◽  
Alireza Mesdaghinia ◽  
Mohammad Hossein Ghahremani ◽  
Simin Nasseri ◽  
Ramin Nabizadeh

1991 ◽  
Vol 18 (3) ◽  
pp. 504-514 ◽  
Author(s):  
K. C. Lin ◽  
M. E. J. Pearce

Four laboratory-scale reactors were used to study the effects of mixing intensity and mixing duration on the anaerobic treatment of potato-processing wastewater at 20 °C. The mixing intensities were set at impeller speeds of 0, 20, 50, and 100 rpm. Two mixing durations were studied: 45 and 15 min/h. It was found that both mixing intensities and mixing durations studied and their joint effect significantly affected the steady-state performance of the anaerobic reactors in treating the potato-processing wastewater with respect to organics and solids removals and methane production. Key words: mixing effects, anaerobic treatment, potato-processing wastewater, organics and solids removal, methane production.


Sign in / Sign up

Export Citation Format

Share Document