The joint acute effect of tetracycline, erythromycin and sulfamethoxazole on acetoclastic methanogens

2015 ◽  
Vol 71 (8) ◽  
pp. 1128-1135 ◽  
Author(s):  
Sevcan Aydın ◽  
Bahar Ince ◽  
Orhan Ince

In this study, we aimed to develop an understanding of the triple effects of sulfamethoxazole–erythromycin–tetracycline (ETS) and the dual effects of sulfamethoxazole–tetracycline (ST), erythromycin–sulfamethoxazole (ES) and erythromycin–tetracycline (ET) on the anaerobic treatment of pharmaceutical industry wastewater throughout a year of operation. Concentrations of the antibiotics in the influent were gradually increased until the metabolic collapse of the anaerobic sequencing batch reactors (SBRs), which corresponded to ETS (40 + 3 + 3 mg/L) and ST (25 + 2.5 mg/L), ET (4 + 4 mg/L) and ES (3 + 40 mg/L). Acetate accumulation in the anaerobic SBRs, acetoclastic activity of the anaerobic sludge taken from different antibiotic feeding stages and also expression of acetyl-coA synthetase from the acetoclastic methanogenic pathway on the mRNA level were assessed. The results indicated that, while acetate accumulation and decrease of acetoclastic activity were observed after stage 3 in the ST and ES reactors, and stage 7 in the ETS and ET reactors, the expression of acetyl-coA synthetase was mostly decreased in the last stages in all SBRs, in which antibiotic mixture feeding was terminated. It might be speculated that acetoclastic methanogens have an important role in acetate degradation by expressing acetyl-coA synthetase.

1990 ◽  
Vol 11 (6) ◽  
pp. 499-508 ◽  
Author(s):  
Jan A. Oleszkiewicz ◽  
Stan Mateja ◽  
J. Eric Hutchison

2013 ◽  
Vol 16 (1) ◽  
pp. 40-48
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

Aerobic granular sludge has attracted extensive interest of researchers since the 90s due to the advantages of aerobic granules such as good settling ability, high biomass accumulation, being resistant to high loads and being less affected by toxic substances. Studies, however, which have mainly been carried out on synthetic wastewater, cannot fully evaluate the actual ability of aerobic granules. Study on aerobic granular sludge was performed in sequencing batch reactors, using seeding sludge taken from anaerobic sludge and tapioca wastewater as a substrates. After 11 weeks of operation, the granules reached the stable diameter of 2- 3 mm at 3.7 kgCOD/m3.day organic loading rate. At high organic loads, in range of 1.6 - 5 kgCOD/m3.day, granules could treat effectively COD, N, P with performance of 93 – 97%; 65 – 79% and 80 – 95%, respectively.


2006 ◽  
Vol 54 (2) ◽  
pp. 199-206 ◽  
Author(s):  
A. Benítez ◽  
A. Ferrari ◽  
S. Gutierrez ◽  
R. Canetti ◽  
A. Cabezas ◽  
...  

Wastewater from dairy industries, characterized by its high COD content and relative high COD/TKN ratio, requires post-treatment after anaerobic treatment to complete the removal of organic matter and nutrients. Due to its simplicity, robustness and low maintenance costs, sequencing batch reactors (SBR) result in an attractive system, especially in case of small dairy industries in order to comply with the emission standards. The goal of this work was to determine the operational parameters, optimize the performance, and study the stability of the microbial population of a SBR system for the post-treatment of an anaerobic pond effluent. High and stable removal of COD and TKN was achieved in the reactor, which can easily be set up in dairy industries. An active nitrifying population was selected during reactor operation and maintained relatively stable, while the heterotrophic (total and denitrifying) communities were more unstable and susceptible to changes in the operating conditions.


2014 ◽  
Vol 69 (9) ◽  
pp. 1853-1858 ◽  
Author(s):  
Evina Katsou ◽  
Nicola Frison ◽  
Simos Malamis ◽  
Francesco Fatone

This work evaluated the use of different external carbon sources to promote the via-nitrite nutrient removal from anaerobic effluents. The carbon sources consisted of fermentation liquid produced from the organic fraction of municipal solid waste (OFMSW FL), drainage liquid produced from OFMSW, fermentation liquid produced from vegetable and fruit waste (VFW FL) and acetic acid. Denitritation and phosphorus uptake via nitrite were evaluated in two sequencing batch reactors, one treating the anaerobic supernatant produced from the co-digestion of OFMSW and activated sludge (highly nitrogenous anaerobic effluent – HNAE), and the other one treating the weakly nitrogenous anaerobic effluent (WNAE) from an upflow anaerobic sludge blanket reactor. The use of OFMSW FL to treat HNAE resulted in high nitrite (27 mgN/(gVSS·h) (VSS – volatile suspended solids) and phosphate uptake (15 mgP/gVSS·h). In the WNAE, nutrient kinetics were much slower. The use of acetic acid and VFW FL performed poorly, while the use of OFMSW FL, which was rich in butyric acid and propionic acid, resulted in significant nutrient removal (7 mgN/gVSS·h and 6 mgP/gVSS·h). The economic evaluation showed that the use of OFMSW FL is a less expensive option than the acetic acid use.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 37-44
Author(s):  
B. Gulmez ◽  
I. Ozturk ◽  
K. Alp ◽  
O. A. Arikan

The purpose of this study is to demonstrate the feasibility of anaerobic treatment of pharmaceutical and baker's yeast industry effluents in a joint treatment system. Anaerobic treatability studies have been performed in a lab-scale upflow anaerobic sludge blanket reactor (UASBR). The experimental study has been carried out for 333 days. The influent COD's during the experimental study were about 10,000 mg/l. Pharmaceutical wastewater has a 5% of inhibition on the COD removals at the dilution rate of 1/100 or more in the joint anaerobic treatment with baker's yeast industry effluents. Maximum inhibition of 10% on the average was observed when the system was characterized with acclimation periods. The study has shown that, following the solvent extraction with pre-aeration process, a common anaerobic treatment can be applied to baker's yeast industry wastewater and to pharmaceutical industry effluents.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 337-344 ◽  
Author(s):  
Gouranga C. Banik ◽  
Richard R. Dague

Anaerobic treatment of dilute wastewater was studied using three laboratory-scale anaerobic sequencing batch reactors (ASBR), each with an active volume of six (6) liters. The reactors were fed a synthetic substrate made from non-fat dry milk supplemented with nutrients and trace metals. The COD and BOD5 of the feed was 600 mg/l and 285 mg/l, respectively. Steady-state performance data were collected at reaction temperatures of 25, 20, 17.5, 15, 12.5, 10, 7.5 and 5°C over a period of two years. Hydraulic retention times (HRT) were maintained at 24, 16, 12, 8 and 6 hours. Results showed that the ASBR process was capable of achieving in excess of 90% soluble COD and BOD5 removal at temperatures of 25°C and 20°C at all HRTs. At the low temperature of 5°C and the six hour HRT, soluble COD and BOD5 removals were 62% and 75%, respectively. At the intermediate temperatures from 20°C down to 5°C and HRTs between 24 and 6 hours, removal of soluble organics ranged between 62 and 90 % for COD and 75 and 90 % for BOD5. In all cases, SRT were high enough to maintain good performance. Substrate utilization rates and half-velocity constants were also determined at all temperatures. The temperature correction coefficient was found to be 1.08 in the temperature range from 25°C to 7.5°C which follows the Q10 or Van't Hoff's rule.


2014 ◽  
Vol 34 (1) ◽  
pp. 124-142 ◽  
Author(s):  
Estevão Urbinati ◽  
Roberto Alves de Oliveira

In this work it was evaluated the performance of two systems of swine wastewater treatment consisting of two-stage upflow anaerobic sludge blanket (UASB) reactors, with and without post-treatment in sequencing batch reactor (SBR), fed continuously, with aerobic phase. The UASB reactors in the first stage had 908 L in the sets I and II, and in the second stage 350 and 188 L, respectively. In the set II the post-treatment was performed in a SBR of 3,000 L. The hydraulic detention times in the anaerobic treatment systems were 100, 75 and 58 h in the set I; 87, 65 and 51 h in the set II; and 240 and 180 h in the SBR. The volumetric organic load applied in the first stage UASB reactors ranged from 6.9 to 12.6 g total COD (L d)-1 in the set I and 7.5 to 9.8 g total COD (L d)-1 in the set II. The average removal efficiencies of total COD, total phosphorus (Ptotal), and Kjeldahl and organic nitrogen (KN and Norg) in the anaerobic treatment systems were similar and reached maximum values of 97%, 64%, 68%, and 98%. In the SBR, the removal efficiencies of total COD and thermotolerant coliforms were up to 62 and 92% resulting, respectively, in effluent concentrations of 135 mg L-1 and 2x10(4)MPN (100 mL)-1. For Ptotal, total nitrogen (TN) and Norg, the average removal efficiencies in the SBR were up to 58, 25 and 73%, respectively.


2020 ◽  
Vol 81 (1) ◽  
pp. 21-28
Author(s):  
Ayse Guventurk ◽  
Dilara Ozturk ◽  
Goksin Ozyildiz ◽  
Ezgi Ayisigi ◽  
Didem Guven ◽  
...  

Abstract Food industry wastewater (FIWW) streams with high organic content are among the most suitable and inexpensive candidates for polyhydroxyalkanoate (PHA) biopolymer production. Due to its high organic acid content, pickle industry wastewater (PIWW), can be considered as one of the prospective alternatives to petroleum-based polymers for PHA production. In this context, this study aimed to investigate the production of PHA with enriched microbial culture using PIWW. Two laboratory scale sequencing batch reactors (SBRs) were operated under aerobic dynamic feeding conditions at a sludge retention time of 8 days, with a total cycle duration of 24 hours. SBRs were fed with peptone mixture and PIWW. In-cycle analysis and batch respirometric tests were performed to evaluate PHA storage together with biodegradation kinetics. In-cycle analysis showed that maximum PHA content was 1,820 mgCOD/L, corresponding to 44% in the biomass (ratio of chemical oxygen demand (COD) to volatile suspended solids) for PIWW. Experimental results were also confirmed with activated sludge model simulations. As for the PHA composition, hydroxybutyrate was the major fraction. Model simulations proposed a unique conversion–degradation–storage pathway for the organic acid mixture. This paper presents a novel insight for better understanding of PHA biopolymer production using high saline FIWW.


2016 ◽  
Vol 15 (11) ◽  
pp. 2529-2535
Author(s):  
Mohammad Reza Alavi Moghaddam ◽  
Mohammad Hakimelahi ◽  
Seyed Hossein Hashemi

Sign in / Sign up

Export Citation Format

Share Document