Water resources of the Texas Gulf Basin

1999 ◽  
Vol 39 (3) ◽  
pp. 121-133 ◽  
Author(s):  
J. G. Arnold ◽  
R. Srinivasan ◽  
T. S. Ramanarayanan ◽  
M. DiLuzio

A geographic information system (GIS) has been integrated with a distributed parameter, continuous time, nonpoint source pollution model SWAT (Soil and Water Assessment Tool) for the management of water resources. This integration has proven to be effective and efficient for data collection and to visualize and analyze the input and output of simulation models. The SWAT-GIS system is being used to model the hydrology of eighteen major river systems in the United States (HUMUS). This paper focuses on the integration of SWAT (basin scale hydrologic model) with the Geographical Resources Analysis Support System (GRASS-GIS) and a relational database management system. The system is then applied to the Texas Gulf River basin. Input data layers (soils, land use, and elevation) were collected at a scale of 1:250,000 from various sources. Average monthly simulated and observed stream flow records from 1970-1979 are presented for the hydrologic cataloging units (HCU) defined by the United States Geological Survey (USGS) in the Texas Gulf basin. Average annual sediment yields computed from sediment rating curves are compared against simulated sediment yields from seven river basins within the Texas Gulf showing reasonable agreement.

2015 ◽  
Vol 8 (11) ◽  
pp. 9415-9449 ◽  
Author(s):  
N. Mizukami ◽  
M. P. Clark ◽  
K. Sampson ◽  
B. Nijssen ◽  
Y. Mao ◽  
...  

Abstract. This paper describes the first version of a stand-alone runoff routing tool, mizuRoute, which post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data, which includes river segment lines and the associated drainage basin polygons. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. The first is hillslope routing, which uses a gamma distribution to construct a unit-hydrograph that represents the transport of runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function–unit hydrograph (IRF-UH) routing procedure. The mizuRoute system also includes tools to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities with spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) dataset, which contains over 54 000 river segments across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.


2016 ◽  
Vol 9 (6) ◽  
pp. 2223-2238 ◽  
Author(s):  
Naoki Mizukami ◽  
Martyn P. Clark ◽  
Kevin Sampson ◽  
Bart Nijssen ◽  
Yixin Mao ◽  
...  

Abstract. This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.


2014 ◽  
Vol 15 (4) ◽  
pp. 1404-1418 ◽  
Author(s):  
Seshadri Rajagopal ◽  
Francina Dominguez ◽  
Hoshin V. Gupta ◽  
Peter A. Troch ◽  
Christopher L. Castro

Abstract Water managers across the United States face the need to make informed policy decisions regarding long-term impacts of climate change on water resources. To provide a scientifically informed basis for this, the evolution of important components of the basin-scale water balance through the end of the twenty-first century is estimated. Bias-corrected and spatially downscaled climate projections, from phase 3 of the Coupled Model Intercomparison Project (CMIP3) of the World Climate Research Programme, were used to drive a spatially distributed Variable Infiltration Capacity (VIC) model of hydrologic processes in the Salt–Verde basin in the southwestern United States. From the suite of CMIP3 models, the authors select a five-model subset, including three that best reproduce the historical climatology for the study region, plus two others to represent wetter and drier than model average conditions, so as to represent the range of GCM prediction uncertainty. For each GCM, data for three emission scenarios (A1B, A2, and B1) were used to drive the hydrologic model into the future. The projections of this model ensemble indicate a statistically significant 25% decrease in streamflow by the end of the twenty-first century. The primary cause for this change is due to projected decreases in winter precipitation accompanied by significant (temperature driven) reductions in storage of snow and increased winter evaporation. The results show that water management in central Arizona is highly likely to be impacted by changes in regional climate.


2013 ◽  
Vol 17 (6) ◽  
pp. 2233-2246 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three Rivers catchment multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other out. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.


2013 ◽  
Vol 10 (2) ◽  
pp. 1943-1985 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1907 ◽  
Author(s):  
Bates ◽  
Beruvides ◽  
Fedler

A system dynamics approach to groundwater modeling suitable for groundwater management planning is presented for a basin-scale system. System dynamics techniques were used to develop a general model for estimating changes in net annual groundwater storage. This model framework was applied to two inland groundwater basins in California and tested against groundwater depletion data developed by the United States Geological Survey. Changes in net groundwater storage developed from these models were compared to values from numerical models provided by the United States Geological Survey. The basin-specific models were able to replicate changes in net annual groundwater storage volumes for 1-year and 5-year periods at a level suitable for planning, with R2 values ranging from 0.88 to 0.93. At the 10-year prediction period, R2 values ranged from 0.83 to 0.91. The results of this research illustrate that a system dynamics model using observed relationships between components may be capable of predicting behavior for the purposes of groundwater management planning.


Sign in / Sign up

Export Citation Format

Share Document