scholarly journals An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India

2013 ◽  
Vol 10 (2) ◽  
pp. 1943-1985 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.

2013 ◽  
Vol 17 (6) ◽  
pp. 2233-2246 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three Rivers catchment multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other out. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.


2020 ◽  
Vol 79 (19) ◽  
Author(s):  
Naeem Saddique ◽  
Talha Mahmood ◽  
Christian Bernhofer

Abstract Land use and land cover (LULC) change is one of the key driving elements responsible for altering the hydrology of a watershed. In this study, we investigated the spatio-temporal LULC changes between 2001 and 2018 and their impacts on the water balance of the Jhelum River Basin. The Soil and Water Assessment Tool (SWAT) was used to analyze the impacts on water yield (WY) and evapotranspiration (ET). The model was calibrated and validated with discharge data between 1995 and 2005 and then simulated with different land use. The increase was observed in forest, settlement and water areas during the study period. At the catchment scale, we found that afforestation has reduced the WY and surface runoff, while enhanced the ET. Moreover, this change was more pronounced at the sub-basin scale. Some sub-basins, especially in the northern part of the study area, exhibited an increase in WY due to an increase in the snow cover area. Similarly, extremes land use scenarios also showed significant impact on water balance components. The basin WY has decreased by 38 mm/year and ET has increased about 36 mm/year. The findings of this study could guide the watershed manager in the development of sustainable LULC planning and water resources management.


2020 ◽  
Vol 5 (2) ◽  
pp. 194-206
Author(s):  
Carolyne Wanessa Lins de Andrade Farias ◽  
Suzana Maria Gico Lima Montenegro ◽  
Abelardo Antônio de Assunção Montenegro ◽  
José Romualdo de Sousa Lima ◽  
Raghavan Srinivasan ◽  
...  

Land-use change has a significant influence on runoff process of any watershed, and the deepening of this theme is essential to assist decision making, within the scope of water resources management. The study was conducted for Mundaú River Basin (MRB) using the Soil and Water Assessment Tool (SWAT) model. The study aims to assess the issue of land-use change and its effect on evapotranspiration, surface runoff, and sediment yield. Input data like land use, topography, weather, and soil data features are required to undertake watershed simulation. Two scenarios of land use were analyzed over 30 years, which were: a regeneration scenario (referring to use in the year 1987) and another scene of degradation (relating to use in the year 2017). Land use maps for 1987 and 2017 were acquired from satellite images. Overall, during the last three decades, 76.4% of forest was lost in the MRB. The grazing land increased in 2017 at a few more than double the area that existed in 1987. Changes in land use, over the years, resulted in an increase of about 37% in the water yield of MRB. Changes have led to increased processes such as surface runoff and sediment yield and in the decrease of evapotranspiration. The spatial and temporal distribution of land use controls the water balance and sediment production in the MRB.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 39 ◽  
Author(s):  
Salem S. Gharbia ◽  
Laurence Gill ◽  
Paul Johnston ◽  
Francesco Pilla

Parametrising the spatially distributed dynamic catchment water balance is a critical factor in studying the hydrological system responses to climate and land use changes. This study presents the development of a geographic information system (GIS)-based set of algorithms (geographical spatially distributed water balance model (GEO-CWB)), which is developed from integrating physical, statistical, and machine learning models. The GEO-CWB tool has been developed to simulate and predict future spatially distributed dynamic water balance using GIS environment at the catchment scale in response to the future changes in climate variables and land use through a user-friendly interface. The tool helps in bridging the gap in quantifying the high-resolution dynamic water balance components for the large catchments by reducing the computational costs. Also, this paper presents the application and validation of GEO-CWB on the Shannon catchment in Ireland as an example of a large and complicated hydrological system. It can be concluded that climate and land use changes have significant effects on the spatial and temporal patterns of the different water balance components of the catchment.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 645 ◽  
Author(s):  
Qingzhou Zheng ◽  
Lu Hao ◽  
Xiaolin Huang ◽  
Lei Sun ◽  
Ge Sun

Understanding the effects of land use change on evapotranspiration (ET) and its partitioning to transpiration and evaporation is important for accurately evaluating the likely environmental impacts on watershed water supply, climate moderation, and other ecosystem services (e.g., carbon sequestration and biodiversity). This study used a distributed hydrologic model, MIKE SHE, to partition evapotranspiration into soil evaporation, transpiration, ponded water evaporation, and interception, and examined how the ET partitions affected the water balance in the Qinhuai River Basin from 2000 to 2013. Simulated daily ET was compared to measurements at an eddy flux research site during 2016–2017 (R2 = 0.72). Degradation in rice-wheat rotation fields and expansion of impervious surfaces impacted not only total watershed evapotranspiration, which showed a significant downward trend (p < 0.05), but also its partitioning. A significant (p < 0.01) decrease in transpiration was detected. Ponded water evaporation was the only ET partition that exhibited a significant positive trend (p < 0.05). We concluded that the reduced transpiration as a result of land use and land cover change was the primary factor driving the variation of watershed scale evapotranspiration. In addition, there was an increase in annual water yield (23%) as a response to significant reduction in ET (7%) due to a 175% expansion of urban area in the study watershed. Our study provided insights to the mechanisms of land surface–water cycle interaction and better understanding of the effects of land use change on urban micro-climate such as “urban dry island” and “urban heat island” effects.


2019 ◽  
Vol 11 (5) ◽  
pp. 1443 ◽  
Author(s):  
Rui Yan ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
Qiang Liu

This study researched the individual and combined impacts of future LULC and climate changes on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of China, using the scenarios of RCP4.5 and 8.5 of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The climate data indicated that both precipitation and temperature increased at seasonal and annual scales from 2020 to 2050 under RCP4.5 and 8.5 scenarios. The future land use changes were predicted through the CA-Markov model. The land use predictions of 2025, 2035, and 2045 indicated rising forest areas with decreased agricultural land and grassland. In this study, three scenarios including only LULC change, only climate change, and combined climate and LULC change were established. The SWAT model was calibrated, validated, and used to simulate the water balance under the three scenarios. The results showed that increased rainfall and temperature may lead to increased runoff, water yield, and ET in spring, summer, and autumn and to decreased runoff, water yield, and ET in winter from 2020 to 2050. However, LULC change, compared with climate change, may have a smaller impact on the water balance. On an annual scale, runoff and water yield may gradually decrease, but ET may increase. The combined effects of both LULC and climate changes on water balance in the future were similar to the variation trend of climate changes alone at both annual and seasonal scales. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area.


Sign in / Sign up

Export Citation Format

Share Document