Decolorizing Dye Wastewater with Low Temperature Catalytic Oxidation

1999 ◽  
Vol 40 (4-5) ◽  
pp. 115-121 ◽  
Author(s):  
Daewon Pak ◽  
Wonseok Chang

Novel oxidation technology to decolorize dye wastewater was discussed and the feasibility of color removal with Fe/MgO catalyst fluidizing in a reactor under continuous flow was demonstrated at room temperature. In batch tests, the oxidation reaction of reactive and disperse dye with an oxidizing agent, hydrogen peroxide, in the presence of Fe/MgO catalyst was performed. Through the catalytic oxidation, dyes were oxidized to molecules with lower molecular weight and then mineralized based on TOC analysis. The influence of hydrogen peroxide and catalyst dosage on the catalytic oxidation rate was verified. The catalytic oxidation rate increased with increasing hydrogen peroxide and catalyst dosage. Fe/MgO catalyst fluidizing in the reactor operated at room temperature was tested to decolorize the wastewater from a dye manufacturing industry. In the fluidized bed reactor, the wastewater was completely decolorized and about 30% of COD removal was obtained during 30 days of operation. Organic matters were degraded and part of them mineralized by the catalytic oxidation. BOD/COD ratio of the effluent from the fluidized bed reactor was increased compared to that of the influent. After 30 days of operation, the effluent from the fluidized bed reactor started becoming yellowish. COD and residual hydrogen peroxide concentration in the effluent started to increase due to the catalyst losing its activity.

Author(s):  
Sakshi Manekar ◽  
Titikshya Mohapatra ◽  
Chandrakant Thakur ◽  
Prabir Ghosh

Abstract Dye is a common pollutant present in many chemical industrial waste water. Advanced oxidation processes are widely used for dye degradation. In this study, the degradation of trypan blue dye was examined by Fenton process. Neutralized red mud catalyst was used as a source of ferrous ion for Fenton’s process. The dye degradation performance has been analyzed by using circulating fluidized-bed reactor. The influence of some key parameters such as pH, initial dye concentration, catalyst dosage and hydrogen peroxide concentration on the degradation of dye has been investigated. All the experiments were performed for 90 min. The initial dye concentration was taken as 1.56 × 10−5 and 2.60 × 10−5 mol L−1 and the amount of catalyst was varied from 0.5 to 0.7 gm/L. The hydrogen peroxide was taken in the ratio of 1:20 with the catalyst. The effect of pH was studied in the varying range from 3–5. It was found that the more the acidic pH, more will be the rate of degradation. The increase in pH results in the lower degradation rate. As the amount of catalyst was increased, the degradation rate got increased. The optimized results were obtained at pH 3, catalyst dosage of 0.7 gm/L and dye concentration of 1.56 × 10−5 mol L−1. Subsequently, the reaction kinetics of Fluidized-bed reactor was also studied.


2007 ◽  
Vol 55 (12) ◽  
pp. 101-106 ◽  
Author(s):  
Y.-T. Lin ◽  
M.-C. Lu

The use of goethite and hydrogen peroxide was recently found to effectively oxidise organic compounds. This research was to investigate the effect of adsorption, pH, Fe2 +  and Fe3 +  on 2-CP oxidation. Results indicated that 2-CP can be decomposed with hydrogen peroxide catalysed by goethite and the oxidation rate increased with decreasing goethite particle size. The optimum oxidation rate was observed at the pH below 3.0.Addition of Fe2 +  and Fe3 +  can enhance the catalytic oxidation rate of 2-CP very efficiently. The main mechanism of goethite catalysing hydrogen peroxide to oxidise 2-CP may be due to the catalysis of ferrous ions and goethite surface.


1992 ◽  
Vol 31 (12) ◽  
pp. 2652-2660 ◽  
Author(s):  
Todd S. Pugsley ◽  
Gregory S. Patience ◽  
Franco Berruti ◽  
Jamal Chaouki

2001 ◽  
Vol 1 (4) ◽  
pp. 131-138
Author(s):  
M.D. Gurol ◽  
S-S. Lin

This paper describes a novel heterogeneous catalytic oxidation process involving the use of hydrogen peroxide ( H2O2) with granular size iron oxide particles (FeOOH) in aqueous phase. The generation of hydroxyl radical (OH•) in the process is demonstrated through the use of a probe chemical, n-chlorobutane (BuCl). Based on the experimental evidence, it is concluded that the OH•, which is produced through the interaction of H2O2 with the surface sites, reacts with solutes adsorbed on the iron oxide surface, causing oxidation of the organic compounds. The generation rate of OH• increases slightly with increasing pH in the range of 5-9. The oxidation rate of BuCl by OH• is relatively insensitive to the pH and the level of bicarbonate ion in subject water due to low affinity of bicarbonate for the surface. Phosphate, on the other hand, inhibits the oxidation rate by preferential adsorption on the surface. This new process provides a viable alternative to the existing oxidation technologies, especially when water has high alkalinity and/or it is desired to oxidize target compounds that have high affinity for the surface selectively.


Chemosphere ◽  
1999 ◽  
Vol 39 (12) ◽  
pp. 1997-2006 ◽  
Author(s):  
Shanshan Chou ◽  
Chihpin Huang ◽  
Yao-Hui Huang

2005 ◽  
Vol 44 (9) ◽  
pp. 1013-1017 ◽  
Author(s):  
Zumin Qiu ◽  
Yunbing He ◽  
Xiaocheng Liu ◽  
Shuxian Yu

2018 ◽  
Vol 192 ◽  
pp. 1177-1188 ◽  
Author(s):  
Sepehr Hamzehlouia ◽  
Jaber Shabanian ◽  
Mohammad Latifi ◽  
Jamal Chaouki

Sign in / Sign up

Export Citation Format

Share Document