The rapid quantification and detection of nitrifying bacteria by using monoclonal antibody method

2000 ◽  
Vol 42 (3-4) ◽  
pp. 1-7 ◽  
Author(s):  
H. Ikuta ◽  
N. Noda ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Monoclonal antibodies against the two kinds of nitrifying bacteria Nitrosomonas europaea (IFO14298) and Nitrobacter winogradskyi (IFO14297) were raised and isotypes of these monoclonal antibodies, IgM and IgG1, were successfully obtained. Cross reactivities of these monoclonal antibodies against various kinds of representative heterotrophic bacteria turned out to be relatively low by competitive ELISA. In contrast, these monoclonal antibodies were very specific for nitrifying bacteria used as antigens. By means of sandwich ELISA using different isotype monoclonal antibodies such as IgM and IgG1, calibration curves were successfully developed for quantification of nitrifying bacteria. It was shown that the obtainable lower limit of quantification of N. europaea and N. winogradskyi were 7.0 × 106 N/ml and were 6.0 × 105 N/ml, respectively. Nitrifying bacteria in activated sludge of advanced domestic wastewater treatment johkaso were counted by sandwich ELISA and MPN methods. The bacterial number estimated by MPN method was lower than that estimated by sandwich ELISA. It was indicated that this monoclonal antibody method could be used as a quick and powerful tool for estimating and controlling the population of nitrifying bacteria in the advanced domestic wastewater treatment processes.

2000 ◽  
Vol 41 (4-5) ◽  
pp. 301-308 ◽  
Author(s):  
N. Noda ◽  
H. Ikuta ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Fluorescent antibody technique by the monoclonal antibody method is very useful and helpful for the rapid quantification and in situ detection of the specific bacteria like nitrifiers in a mixed baxterial habitat such as a biofilm. In this study, twelve monoclonal antibodies against Nitrosomonas europaea (IFO14298) and sixteen against Nitrobacter winogradskyi (IFO14297) were raised from splenocytes of mice (BALB/c). It was found that these antibodies exhibited little cross reactivity against various kinds of heterotrophic bacteria. The direct cell count method using monoclonal antibodies could exactly detect and rapidly quantify N. europaea and N. winogradskyi. Moreover, the distribution of N. europaea and N. winogradskyi in a biofilm could be examined by in situ fluorescent antibody technique. It was shown that most of N. winogradskyi existed near the surface part and most of N. europaea existed at the inner part of the polyethylene glycol (PEG) gel pellet, which had entrapped activated sludge and used in a landfill leachate treatment reactor. It was suggested that this monoclonal antibody method was utilized for estimating and controlling the population of nitrifying bacteria as a quick and favorable tool.


2021 ◽  
Vol 6 (1) ◽  
pp. 101-112
Author(s):  
Sharjeel Waqas ◽  
Muhammad Roil Bilad ◽  
Zakaria B Man

Biological processes are extensively used for wastewater treatment because of low organic footprint, economically feasible, and high treatment efficiency. Rotating biological contactors (RBC), an attached growth biological process offers advantage of low operating cost, simple configuration and structure, reduced bionomical footprint and thus has been extensively employed for organics and nitrogen removal. In this study, RBC was used for the treatment of synthetic domestic wastewater operating at high hydraulic and organic loading rate to demonstrate the biological performance. The results showed that the RBC achieved a treatment efficiency for COD, ammonium, TN and turbidity of 70.2%, 95.2%, 70%, and 78.9 %, respectively. The efficient nitrogen removal and increased nitrate concentration signify the presence of nitrifying bacteria which actively degrade the nitrogen compounds through the nitrification process. Thus, this system is a sound alternative for both domestic and industrial wastewater treatment for decentralized applications.


2005 ◽  
Vol 51 (10) ◽  
pp. 85-92 ◽  
Author(s):  
C. Chiemchaisri ◽  
K. Yamamoto

Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid–liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 °C. As the temperature was stepwise decreased from 25 to 5 °C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 °C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2–3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.


1997 ◽  
Vol 36 (12) ◽  
pp. 169-174 ◽  
Author(s):  
Yuhei Inamori ◽  
Tomotake Takai ◽  
Naohiro Noda ◽  
Akira Hirata ◽  
Hiroshi Niioka ◽  
...  

Enzyme-linked immunosorbent assay (ELISA) by use of monoclonal antibodies (MAbs) is very useful and helpful for the detection and quantification of the specific bacteria like nitrifiers in a mixed bacterial habitat. In this study, seven monoclonal antibodies were raised from splenocytes of mice(BALB/c) that are specific for the surface antigen of the two kinds of nitrifying bacteria. Three were directed against Nitrosomonas europaea (IFO 14298) and four were directed against Nitrobacter winogradskyi (IFO 14297). Cross-reactivities of MAbs against other strains of nitrifying bacteria as well as some kinds of representative heterotrophic bacteria in activated sludge and biofilm were checked to determine the usefulness of MAbs. It was found that there were some strain specificities between the same genera of IFO and ATCC strain. By means of a competitive ELISA, correlation curves for quantifying nitrifying bacteria were developed in a pure culture. It was found that this monoclonal antibody method could be used as a quick and powerful tool for estimating and controlling the population of nitrifying bacteria.


2014 ◽  
Vol 13 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Alireza Valipour ◽  
Seyed Masoud Taghvaei ◽  
Venkatraman Kalyan Raman ◽  
Gagik Badalians Gholikandi ◽  
Shervin Jamshidi ◽  
...  

2021 ◽  
pp. 100059
Author(s):  
Lijiao Liu ◽  
Junjun Cao ◽  
Mehran Ali ◽  
Jiaxin Zhang ◽  
Zhaolong Wang

Sign in / Sign up

Export Citation Format

Share Document