Aerobic granular sludge technology: an alternative to activated sludge?

2004 ◽  
Vol 49 (11-12) ◽  
pp. 1-7 ◽  
Author(s):  
L.M.M. de Bruin ◽  
M.K. de Kreuk ◽  
H.F.R. van der Roest ◽  
C. Uijterlinde ◽  
M.C.M. van Loosdrecht

Laboratory experiments have shown that it is possible to cultivate aerobic granular sludge in sequencing batch reactors. In order to direct future research needs and the critical points for successful implementation at large scale, a full detailed design of a potential application was made. The design was based on the laboratory results, and two variants of a full-scale sewage treatment plant based on Granular sludge Sequencing Batch Reactors (GSBRs) were evaluated. As a reference a conventional treatment plant based on activated sludge technology was designed for the same case. Based on total annual costs both GSBR variants proved to be more attractive than the reference alternative (7-17% lower costs). From a sensitivity analysis it appeared that the GSBR technology was less sensitive to the land price and more sensitive to a rain weather flow (RWF). This means that the GSBR technology becomes more attractive at lower permissible RWF/DWF ratios and higher land prices. The footprint of the GSBR variants was only 25% compared to the reference. However, the GSBR with primary treatment only cannot meet the present effluent standards for municipal wastewater in The Netherlands, mainly because of a too high suspended solids concentration in the effluent. A growing number of sewage treatment plants in the Netherlands are going to be faced with more stringent effluent standards. In general, activated sludge plants will have to be extended with a post treatment step (e.g. sand filtration) or be transformed into Membrane Bioreactors. In this case a GSBR variant with primary treatment as well as post treatment can be an attractive alternative.

2012 ◽  
Vol 518-523 ◽  
pp. 2340-2343
Author(s):  
Ting Lin ◽  
Xin Gang Wang ◽  
Yu Bin Tang ◽  
Fang Yan Chen

The aerobic granular sludge was cultivated in the self-designed sequencing batch reactors (SBR) using ordinary flocculent activated sludge as seeding sludge. In this experiment the effect of different load on the formation of aerobic granular sludge is studied. The formation process of aerobic granular sludge and the capacity of denitrification and phosphorus performance are discussed and characterized. It shows that higher sludge loading is beneficial to the formation of aerobic granular sludge, and mature aerobic granular sludge has high sedimentation speed and the very good decontamination ability. The removal rates of COD, NH4+Subscript text-N and TP are 97%, 85% and 95%.


Author(s):  
Syahira Ibrahim ◽  
Norhaliza Abdul Wahab ◽  
Aznah Nor Anuar ◽  
Mustafa Bob

This paper proposes an improved optimisation of sequencing batch reactors (SBR) for aerobic granular sludge (AGS) at high temperature-low humidity for domestic wastewater treatment using response surface methodology (RSM). The main advantages of RSM are less number of experiment required and suitable for complex process. The sludge from a conventional activated sludge wastewater treatment plant and three sequencing batch reactors (SBRs) were fed with synthetic wastewater. The experiment were carried out at different high temperatures (30, 40 and 50°C) and the formation of AGS for simultaneous organics and nutrients removal were examined in 60 days. RSM is used to model and to optimize the biological parameters for chemical oxygen demand (COD) and total phosphorus removal in SBR system. The simulation results showed that at temperature of 45.33°C give the optimum condition for the total removal of COD and phosphorus, which correspond to performance index R<sup>2</sup> of 0.955 and 0.91, respectively.


1999 ◽  
Vol 39 (6) ◽  
pp. 61-68 ◽  
Author(s):  
Klangduen Pochana ◽  
Jürg Keller

Experiments have been performed to gain an understanding of the conditions and processes governing the occurrence of SND in activated sludge systems. Sequencing batch reactors (SBRs) have been operated under controlled conditions using the wastewater from the first anaerobic pond in an abattoir wastewater treatment plant. Under specific circumstances, up to 95% of total nitrogen removal through SND has been found in the system. Carbon source and oxygen concentrations were found to be important process parameters. The addition of acetate as an external carbon source resulted in a significant increase of SND activity in the system. Stepwise change of DO concentration has also been observed in this study. Experiments to determine the effect of the floc size on SND have been performed in order to test the hypothesis that SND is a physical phenomenon, governed by the diffusion of oxygen into the activated sludge flocs. Initial results support this hypothesis but further experimental confirmation is still required.


2013 ◽  
Vol 47 (19) ◽  
pp. 7006-7018 ◽  
Author(s):  
David G. Weissbrodt ◽  
Guillaume S. Schneiter ◽  
Jean-Marie Fürbringer ◽  
Christof Holliger

2013 ◽  
Vol 16 (1) ◽  
pp. 40-48
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

Aerobic granular sludge has attracted extensive interest of researchers since the 90s due to the advantages of aerobic granules such as good settling ability, high biomass accumulation, being resistant to high loads and being less affected by toxic substances. Studies, however, which have mainly been carried out on synthetic wastewater, cannot fully evaluate the actual ability of aerobic granules. Study on aerobic granular sludge was performed in sequencing batch reactors, using seeding sludge taken from anaerobic sludge and tapioca wastewater as a substrates. After 11 weeks of operation, the granules reached the stable diameter of 2- 3 mm at 3.7 kgCOD/m3.day organic loading rate. At high organic loads, in range of 1.6 - 5 kgCOD/m3.day, granules could treat effectively COD, N, P with performance of 93 – 97%; 65 – 79% and 80 – 95%, respectively.


2020 ◽  
Vol 255 ◽  
pp. 109850 ◽  
Author(s):  
Antônio Ricardo Mendes Barros ◽  
Silvio Luiz de Sousa Rollemberg ◽  
Clara de Amorim de Carvalho ◽  
Ian Holanda Herbster Moura ◽  
Paulo Igor Milen Firmino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document