scholarly journals Study on aerobic granular sludge formation in sequencing batch reactors for tapioca wastewater treatment

2013 ◽  
Vol 16 (1) ◽  
pp. 40-48
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

Aerobic granular sludge has attracted extensive interest of researchers since the 90s due to the advantages of aerobic granules such as good settling ability, high biomass accumulation, being resistant to high loads and being less affected by toxic substances. Studies, however, which have mainly been carried out on synthetic wastewater, cannot fully evaluate the actual ability of aerobic granules. Study on aerobic granular sludge was performed in sequencing batch reactors, using seeding sludge taken from anaerobic sludge and tapioca wastewater as a substrates. After 11 weeks of operation, the granules reached the stable diameter of 2- 3 mm at 3.7 kgCOD/m3.day organic loading rate. At high organic loads, in range of 1.6 - 5 kgCOD/m3.day, granules could treat effectively COD, N, P with performance of 93 – 97%; 65 – 79% and 80 – 95%, respectively.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1400
Author(s):  
Bach Van Nguyen ◽  
Xiaojing Yang ◽  
Shota Hirayama ◽  
Jixiang Wang ◽  
Ziwen Zhao ◽  
...  

Heavy metal-containing wastewater with high salinity challenges wastewater treatment plants (WWTPs) where the conventional activated sludge process is widely applied. Bioremediation has been proven to be an effective, economical, and eco-friendly technique to remove heavy metals from various wastewaters. The newly developed algal-bacterial aerobic granular sludge (AGS) has emerged as a promising biosorbent for treating wastewater containing heavy metals, especially Cr(VI). In this study, two identical cylindrical sequencing batch reactors (SBRs), i.e., R1 (Control) and R2 (with 1% additional salinity), were used to cultivate algal-bacterial AGS and then to evaluate the effect of salinity on the performance of the two SBRs. The results reflected that less filamentation and a rougher surface could be observed on algal-bacterial AGS when exposed to 1% salinity, which showed little influence on organics removal. However, the removals of total inorganic nitrogen (TIN) and total phosphorus (TP) were noticeably impacted at the 1% salinity condition, and were further decreased with the co-existence of 2 mg/L Cr(VI). The Cr(VI) removal efficiency, on the other hand, was 31–51% by R1 and 28–48% by R2, respectively, indicating that salinity exposure may slightly influence Cr(VI) bioremediation. In addition, salinity exposure stimulated more polysaccharides excretion from algal-bacterial AGS while Cr(VI) exposure promoted proteins excretion.


Author(s):  
Syahira Ibrahim ◽  
Norhaliza Abdul Wahab ◽  
Aznah Nor Anuar ◽  
Mustafa Bob

This paper proposes an improved optimisation of sequencing batch reactors (SBR) for aerobic granular sludge (AGS) at high temperature-low humidity for domestic wastewater treatment using response surface methodology (RSM). The main advantages of RSM are less number of experiment required and suitable for complex process. The sludge from a conventional activated sludge wastewater treatment plant and three sequencing batch reactors (SBRs) were fed with synthetic wastewater. The experiment were carried out at different high temperatures (30, 40 and 50°C) and the formation of AGS for simultaneous organics and nutrients removal were examined in 60 days. RSM is used to model and to optimize the biological parameters for chemical oxygen demand (COD) and total phosphorus removal in SBR system. The simulation results showed that at temperature of 45.33°C give the optimum condition for the total removal of COD and phosphorus, which correspond to performance index R<sup>2</sup> of 0.955 and 0.91, respectively.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3894
Author(s):  
Joanna Czarnota ◽  
Janusz A. Tomaszek ◽  
Adam Masłoń ◽  
Adam Piech ◽  
Grzegorz Łagód

The effects of two powdered mineral materials (powdered ceramsite and powdered limestone) on aerobic granulation of sludge were evaluated. The experiment was conducted on a laboratory scale bioreactors treating wastewater for 89 days. Three granular sequencing batch reactors (GSBRs) were operated at the lowest optimal organic loading rate (OLR) of 2.55 g COD/(L∙d). In the control reactor (R1), the mean diameter (d) of the biomass ranged from 124.0 to 210.0 µm, and complete granulation was not achieved. However, complete granulation did occur in reactors to which either ceramsite (251.9 µm < d < 783.1 µm) or limestone (246.0 µm < d < 518.9 µm) was added. Both powdered materials served as a ballast for the sludge flocs making up the seed sludge. Ceramsite particles also acted as microcarriers of granule-forming biomass. The granules in the reactors with added powdered materials had nonfibrous and smoother surfaces. The reactor with ceramsite exhibited the highest average efficiencies for COD, total nitrogen, and total phosphorus removal (85.4 ± 5.4%, 56.6 ± 10.2%, and 56.8 ± 9.9%, respectively). By contrast, the average nitrification efficiency was 95.1 ± 12.8%.


RSC Advances ◽  
2017 ◽  
Vol 7 (19) ◽  
pp. 11608-11615 ◽  
Author(s):  
Qian Feng ◽  
Yangyang Yu ◽  
Chong Guo ◽  
Xindi Chen ◽  
Jiashun Cao ◽  
...  

Lab-scale Sequencing Batch Reactors (SBR) were adopted to study the effects of Ni(ii) exposure on the simultaneous nitrification and denitrification (SND) of the aerobic granular sludge under different concentrations of Ni(ii) (1.0, 5.0 and 10.0 mg L−1).


2015 ◽  
Vol 73 (3) ◽  
pp. 564-575 ◽  
Author(s):  
Jonas Margot ◽  
Samuel Lochmatter ◽  
D. A. Barry ◽  
Christof Holliger

Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l−1 in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 403-411 ◽  
Author(s):  
J. Li ◽  
K. Garny ◽  
T. Neu ◽  
M. He ◽  
C. Lindenblatt ◽  
...  

Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid–liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.


2008 ◽  
Vol 58 (4) ◽  
pp. 781-787 ◽  
Author(s):  
B. S. McSwain Sturm ◽  
R. L. Irvine

Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s−1. When less than 1 cm s−1 shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L−1 to 5 mg L−1, affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s−1, but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L−1, with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force.


Author(s):  
Juan Pablo Pavissich ◽  
Nicolás Camus ◽  
José Luis Campos ◽  
Oscar Franchi ◽  
Alba Pedrouso ◽  
...  

Cyclic episodes of granules formation and disintegration took place in two lab-scale aerobic granular sludge sequencing batch reactors, one fed with synthetic wastewater (COD: 0.6 g/L and NH4+-N: 0.06 g/L)...


Sign in / Sign up

Export Citation Format

Share Document