Waste stabilization ponds and rock filters: solutions for small communities

2007 ◽  
Vol 55 (7) ◽  
pp. 103-107 ◽  
Author(s):  
D.D. Mara ◽  
M.L. Johnson

In temperate climates facultative ponds and rock filters (either unaerated or, if ammonia removal is required, aerated) are a low-cost but high-performance treatment system for small rural communities. Effluent quality is suitable for surface water discharge or, in summer, for restricted crop irrigation. In tropical climates anaerobic and facultative ponds and either unaerated rock filters or, if ammonia reduction is required, subsurface horizontal-flow or vertical-flow constructed wetland, can be used if the effluents are discharged to surface waters. However, if the treated wastewater is to be used for crop irrigation, then a 3-log unit pathogen reduction by treatment in anaerobic, facultative and single maturation ponds is required for both restricted and unrestricted irrigation, provided that, in the case of unrestricted irrigation, there are in place post-treatment health-protection control measures that together provide a further 4-log unit pathogen reduction.

Author(s):  
Emmanuel B. Tanor ◽  
Itumeleng Lejone ◽  
Sibusisiwe Magama ◽  
Mantopi Martina Lebofa

Objective: The aim of the study was to determine the quality of Liquid Digestate (LD) from selected small scale anaerobic digesters for biogas production and assess the suitability for crop irrigation. Methodology: The selection of the parameters was guided by national standards and international guidelines for the agricultural use of wastewater and wastewater treatment products. The analysis was carried out using standard methods. Results: The results showed that most of the parameters determined of the LD from the anaerobic reactors were within the ranges of the national standards and the FAO recommended guideline limits for crop irrigation with wastewater; pH (6.75-8.50), alkalinity 12.5-45.7 mg/L), EC 0.39-1.30dS/m), COD (82.3-158.0 mg.O2/L, SS (1.35-6.17 mg/L) and TDS (249.6-832.0 mg/L). The LD from the reactors contain some considerable amounts of plant nutrients; total nitrogen (11.5- 33.1 mg/L), ammonium nitrogen (2.3-22.0 mg/L), total phosphorous (1.5-121.6 mg/L) calcium (37.68-438 mg/L), magnesium (15.25-127-36 mg/L), sodium (4.67-32.47 mg/L), chloride (9.30-19.5 mg/L) and potassium (12.07-39.50 mg/L). The mean concentrations of the micronutrients cobalt (0.67-0.94 mg/L), copper (0.78-1.08 mg/L), iron (0.851.93 mg/L), manganese (0.09-0.20 mg/L), nickel (0.82-1.48 mg/L) and zinc (0.31-2.24 mg/L) were greater than the FAO guideline limits for wastewater used in crop irrigation, which suggests that the LD are potential low-cost biofertilizer. The level of toxic metals arsenic (0.65-0.87 mg/L), cadmium (0.70-0.97 mg/L), chromium (0.71-0.98 mg/L) and lead (0.55-1.46 mg/L), were higher than the recommended levels for use of treated wastewater in crop irrigation. The numbers of the common pathogenic microorganisms determined were much lower than the FAO and WHO recommended limits indicating that the liquid digestate will not pose any major health risk a biofertilizer. Conclusion: The nutrients and other parameters indicated that the quality of the LD is good enough to be used for crop irrigation without any restrictions.However, the LD should be used with caution, because of the levels of the toxic metals, which may accumulate in the soil after prolonged application. Also, extension services on best practices for the agricultural application of the LD should be made available to potential users to mitigate any potential negative environmental and health impacts.


2013 ◽  
Author(s):  
Olumide Bello ◽  
Da’Janel Roberts-Smith ◽  
Landon Onyebueke

Hybrid Energy Systems (HES) offer hopeful solutions to an array of challenges circumventing conventional energy usage. From sustainable mobility developments to rural communities, hybrid energy systems can provide reliable energy to suffice any load demand when properly sized. Sizing optimality is essential in maintaining low-cost, high-performance and superior efficiency. The methodology for sizing a Photovoltaic-Wind-Diesel with battery backup hybrid energy system and its accompanying costs are calculated using Homer software. The results are presented in this article. Such costs include the concept of levelized cost of energy (LCOE), time-dependent trade-off considerations necessary to deploy a functional, reliable and cost-effective energy system and comfort. The anticipated output of this economic model validates the feasibility of attaining affordability and optimality in a HES that relies on renewable energy and battery storage for applications of varying scales.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Aneeba Rashid ◽  
Safdar A. Mirza ◽  
Ciara Keating ◽  
Umer Z. Ijaz ◽  
Sikander Ali ◽  
...  

Raw hospital wastewater is a source of excessive heavy metals and pharmaceutical pollutants. In water-stressed countries such as Pakistan, the practice of unsafe reuse by local farmers for crop irrigation is of major concern. In our previous work, we developed a low-cost bacterial consortium wastewater treatment method. Here, in a two-part study, we first aimed to find what physico-chemical parameters were the most important for differentiating consortium-treated and untreated wastewater for its safe reuse. This was achieved using a Kruskal–Wallis test on a suite of physico-chemical measurements to find those parameters which were differentially abundant between consortium-treated and untreated wastewater. The differentially abundant parameters were then input to a Random Forest classifier. The classifier showed that ‘turbidity’ was the most influential parameter for predicting biotreatment. In the second part of our study, we wanted to know if the consortium-treated wastewater was safe for crop irrigation. We therefore carried out a plant growth experiment using a range of popular crop plants in Pakistan (Radish, Cauliflower, Hot pepper, Rice and Wheat), which were grown using irrigation from consortium-treated and untreated hospital wastewater at a range of dilutions (turbidity levels) and performed a phytotoxicity assessment. Our results showed an increasing trend in germination indices and a decreasing one in phytotoxicity indices in plants after irrigation with consortium-treated hospital wastewater (at each dilution/turbidity measure). The comparative study of growth between plants showed the following trend: Cauliflower > Radish > Wheat > Rice > Hot pepper. Cauliflower was the most adaptive plant (PI: −0.28, −0.13, −0.16, −0.06) for the treated hospital wastewater, while hot pepper was susceptible for reuse; hence, we conclude that bacterial consortium-treated hospital wastewater is safe for reuse for the irrigation of cauliflower, radish, wheat and rice. We further conclude that turbidity is the most influential parameter for predicting bio-treatment efficiency prior to water reuse. This method, therefore, could represent a low-cost, low-tech and safe means for farmers to grow crops in water stressed areas.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Sign in / Sign up

Export Citation Format

Share Document