Use of RNA-based genotypic approaches for quantification of viable but non-culturable Salmonella sp. in biosolids

2008 ◽  
Vol 58 (9) ◽  
pp. 1823-1828 ◽  
Author(s):  
T. Dunaev ◽  
S. Alanya ◽  
M. Duran

Recent research efforts demonstrated an increase in fecal coliform counts in anaerobically digested biosolids after dewatering. Variety of bacteria enters viable but nonculturable (VNC) state as a survival response when exposed to environmental stress. Increase in coliform concentration after digestion and dewatering processes have been attributed to cells going into a viable but non-culturable state implying that traditional coliform enumeration methods are not sufficient to determine number of viable cells. Therefore, this research has been undertaken to develop a method for rapid and accurate quantification of viable but non-culturable pathogens in biosolids via monitoring and quantifying stress-related genes in Salmonella sp. The proposed method has the potential to allow accurate detection of pathogens in biosolids even when the cells are non-culturable due to environmental stress. The research proposed identification of stress related genes in Salmonella when cells are exposed to heat for different durations by using available Salmonella microarrays. In the context of this study the identified stress genes can be quantified through reverse transcription, complementary DNA (cDNA) synthesis, and amplification of cDNA via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Then quantity of mRNA can be correlated to cell viability and cells ability to grow, i.e., their culturability. Development of a novel approach to understand the pathogen behaviour in biosolids is key to ensure low public health risks from biosolids. Nevertheless, the initial results suggest that intact RNA isolation from biosolids is still challenging task.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Uday Kiran ◽  
C G Gokulan ◽  
Santosh Kumar Kuncha ◽  
Dhiviya Vedagiri ◽  
Bingi Thrilok Chander ◽  
...  

Abstract Rigorous testing is the way forward to fight the coronavirus disease 2019 pandemic. Here we show that the currently used and most reliable reverse transcription-polymerase chain reaction-based severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) procedure can be further simplified to make it faster, safer, and economical by eliminating the RNA isolation step. The modified method is not only fast and convenient but also at par with the traditional method in terms of accuracy, and therefore can be used for mass screening. Our method takes about half the time and is cheaper by ∼40% compared to the currently used method. We also provide a variant of the new method that increases the efficiency of detection by ∼30% compared to the existing procedure. Taken together, we demonstrate a more effective and reliable method of SARS-CoV-2 detection.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

Sign in / Sign up

Export Citation Format

Share Document