The effect of iron and aluminium for phosphorus removal on anaerobic digestion and organic sulfur generation

2010 ◽  
Vol 62 (2) ◽  
pp. 419-426 ◽  
Author(s):  
John T. Novak ◽  
Chang Min Park

The addition of iron or aluminium into activated sludge basins for phosphorus removal is likely to impact both the efficiency of the anaerobic digestion process and the generation of odor-causing compounds following digestion and dewatering. In this study, the impact of iron and aluminium addition on digestion and odor-causing compounds was investigated by using batch digestion of combined primary and waste activated sludge. It was found that aluminium addition resulted in a decrease in volatile solids destruction by anaerobic digestion of approximately 2%. Of the 7 sludges tested, 5 showed a small increase in volatile solids destruction after iron addition. With regard to the generation of organic sulfur odors from the dewatered sludge cakes, both iron and aluminium reduced odor-causing gases except for one sludge that had already received iron for phosphorus control in the full-scale process. It appears that iron and aluminium addition will benefit odor control.

2017 ◽  
pp. 558-563
Author(s):  
Svetlana Ofverstrom ◽  
Ieva Sapkaite ◽  
Regimantas Dauknys

In this study, the impact of iron and aluminium salts addition on anaerobic digestion process was investigated. Mixture of primary and activated sludge collected at Vilnius wastewater treatment plant in Lithuania was digested under laboratory conditions by using anaerobic digester (W8, Amfield, UK). To compare the relative digestibility of iron-dosed (Fe-dosed)and aliuminium-iron-dosed (Al-Fe-dosed) sludge with un-dosed sludge three continuous experiments were made. Results showed that iron and aliuminium negatively impacted anaerobic digestion process by reducing the volume of biogas produced. Fe-dosed sludge produced 20-50% less biogas and Al-Fe-dosed sludge produced 30-40% less biogas in comparison to the same un-dosed sludge. VS destruction decreased during dosing of Fe or/and Al salt. Biogas composition was not measured during the experiments.


2012 ◽  
Vol 103 (1) ◽  
pp. 415-424 ◽  
Author(s):  
R. Uma Rani ◽  
S. Adish Kumar ◽  
S. Kaliappan ◽  
Ick-Tae Yeom ◽  
J. Rajesh Banu

2018 ◽  
Vol 78 (8) ◽  
pp. 1772-1781 ◽  
Author(s):  
Hyungjun (Brian) Jo ◽  
Wayne Parker ◽  
Peiman Kianmehr

Abstract A range of thermal pretreatment conditions were used to evaluate the impact of high pressure thermal hydrolysis on the biodegradability of waste activated sludge (WAS) under aerobic and anaerobic conditions. It was found that pretreatment did not increase the overall extent to which WAS could be aerobically biodegraded. Thermal pretreatment transformed the biodegradable fraction of WAS (XH) to readily biodegradable chemical oxygen demand (COD) (SB) (16.5–34.6%) and slowly biodegradable COD (XB) (45.8–63.6%). The impact of pretreatment temperature and duration on WAS COD fractionation did not follow a consistent pattern as changes in COD solubilization did not correspond to the observed generation of SB through pretreatment. The pretreated WAS (PWAS) COD fractionations determined from aerobic respirometry were employed in anaerobic modeling and it was concluded that the aerobic and anaerobic biodegradability of PWAS differed. It was found that thermal pretreatment resulted in as much as 50% of the endogenous decay products becoming biodegradable in anaerobic digestion. Overall, it was concluded that the COD fractionation that was developed based upon the aerobic respirometry was valid. However, it was necessary to implement a first-order decay process that reflected changes in the anaerobic biodegradability of the endogenous products through pretreatment.


2010 ◽  
Vol 113-116 ◽  
pp. 450-458 ◽  
Author(s):  
Yong Zhi Chi ◽  
Yu You Li ◽  
Min Ji ◽  
Hong Qiang ◽  
Heng Wei Deng ◽  
...  

This paper presents an experimental study over 204 days on anaerobic degradation of thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant (WWTP). The experiments were conducted under thermophilic (55°C) and mesophilic (35°C) condition, respectively, by using the semi-continuous flow completely mixed reactors. The influent total solids (TS), hydraulic retention time (HRT) and chemical oxygen demand (COD) loading levels were around 4%, 30 days and 1.67 kg-CODCr•m-3•d-1 , respectively. During the opration period, the thermophilic anaerobic digestion process (TADP) and the mesophilic anaerobic digestion process (MADP) were stable and well-functioned without ammonia inhibition. Particulate organic matters reduction of TADP was superior to that of MADP. This result implies that TADP has higher sludge reduction efficiency than MADP. According to the simulated chemical formula of TWAS, C5.85H9.75O3.96N, and the stoichiometric equation, the methane content and the ammonia yield in the anaerobic process could be calculated, which were consistent with the experimental results. The methane yield of TADP was a little higher than that of MADP. The statistical mean values of methane content for TADP and MADP were 60.97% and 62.38%, respectively.According to paired t-test, there was a significant difference in methane content between TADP and MADP(α=0.01, n=62). Compared with the mesophilic digested sludge, the dewaterability of thermophilic digested sludge was lower.


2021 ◽  
Author(s):  
Suleman Khan

The effects of hydrothermal pre-treatment on the production of methane and biogas on thickened waste activated sludge was investigated. This paper reviews the anaerobic digestion process and its complexities, provides an overview of the different stages of the anaerobic digestion process, different kinds of feedstocks and the essential and influential operating parameters such as temperature, pH, organic loading rate, solid retention time and particle size. This paper also demonstrates an overview of the natural and anthropogenic sources contributing to methane in the atmosphere. It further provides a recommendation on essential practices and methods required to enhance methane capture in the atmosphere. Furthermore, an experimental setup consisting of batch anaerobic digestion was employed for the sample analysis the purpose of this experimental research was to conduct a comprehensive assessment of the effect of the hydrothermal pre-treatment on thickened waste activated sludge and to determine the most optimum conditions to produce methane. Keywords: Anaerobic digestion, Thickened waste-activated sludge, Hydrothermal Pre-treatment


2019 ◽  
Author(s):  
Razieh Karimi ◽  
Seyed Mostafa Hallaji

Abstract Background Recently, free nitrous acid (FNA) pre-treatment of sewage waste activated sludge has been introduced as an economically attractive and environmentally friendly technique for enhancing methane production from the anaerobic digestion process. Fenton pre-treatment of sewage sludge, as an advanced oxidation process, has also been introduced as a powerful technique for methane improvement in a couple of studies. This study, for the first time, investigates the synergy of combined FNA and Fenton pre-treatment technologies in enhancing the methane production from the anaerobic digestion process and reducing waste sludge to be disposed of. Actual secondary waste activated sludge in laboratory-scale batch reactors was used to assess the synergistic effect of the pre-treatments. The mechanisms behind the methane enhancement were also put into perspective by measuring different microbial enzymes activity and solubilisation of organic matter. Result This study revealed that the combined pre-treatments release organic matter into the soluble phase significantly more than the bioreactors pre-treated with individual FNA and Fenton. For understanding the influence of pre-treatments on solubilisation of organic matter, soluble protein, soluble polysaccharide and soluble chemical oxygen demand (SCOD) were measured before and after the treatments and it was shown that they respectively increased by 973%, 33% and 353% after the treatments. Protease and cellulose activity, as the key constituents of the microbial community presenting in activated sludge, decreased considerably within the combined pre-treatments (42% and 32% respectively) and methane production enhanced by 43-69%. Furthermore, total solids and volatile solids destruction improved by 26% and 24% at the end of anaerobic digestion, which can reduce transport costs of sludge and improve the quality of sludge for application in farms and forests. Conclusions The results obtained from the experiments corroborate the synergic effect of the combined FNA and Fenton pre-treatment technologies in degrading the organic and microbial constituents in waste activated sludge, which improved methane production accordingly. This is of paramount importance because the total costs of wastewater treatment plants operation and greenhouse gas emission from sludge treatment and disposal processes would reduce considerably, which pave the way for the implementation of these technologies.


Sign in / Sign up

Export Citation Format

Share Document