Granular biomass selection in a double-stage biogas collection UASB reactor: effects on SMA, abundance and diversity of the methanogenic population

2012 ◽  
Vol 66 (12) ◽  
pp. 2570-2577 ◽  
Author(s):  
J. O. Pereira ◽  
E. F. A. Mac Conell ◽  
S. Q. Silva ◽  
C. A. L. Chernicharo

The present work aimed at investigating biomass selection in a pilot-scale double-stage biogas collection (DSBC) upflow anaerobic sludge bed (USAB) reactor treating domestic wastewater. Specific methanogenic activity (SMA) measurements and FISH countings were applied to sludge samples collected during 102 days of operation of the DSBC–UASB and of a control reactor. Results showed that both reactors presented similar SMA values in early stages of operation however the UASB–DSBC reactor showed much higher SMA after day 45, when the biomass was in granular stage. In terms of archaeal abundance, no statistical difference was observed between the reactors. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) revealed a similar composition of the archaeal communities in the two reactors and during the operational period, mainly constituted by Methanosaeta concilii. The results suggest that cell activity rather than archaeal abundance or diversity drive the methane production in the UASB reactors.

2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2009 ◽  
Vol 59 (9) ◽  
pp. 1847-1853 ◽  
Author(s):  
R. C. Leitão ◽  
S. T. Santaellla ◽  
A. C. van Haandel ◽  
G. Zeeman ◽  
G. Lettinga

The effects of hydraulic retention time (HRT) and influent COD concentration (CODInf) on Specific Methanogenic Activity (SMA) and the biodegradability of an anaerobic sludge need to be elucidated because of the discordant results available in literature. This information is important for the operation of anaerobic reactors and design of the sludge post-treatment unit. For this study, sludge samples obtained from eight pilot-scale Upflow Anaerobic Sludge Blanket (UASB) reactors were tested. The reactors were fed with municipal wastewater and operated with different sets of HRT and influent concentrations until the steady state was established. The results show that at a lower HRT, sludge with relatively higher SMA develops. A slight trend of declining SMA at increasing CODInf was found for reactors operated at longer HRTs; however, further experiments are necessary for more definitive conclusions. The sludge from reactors operated at longer HRTs and with lower CODInf resulted in lower biodegradability. Results also showed that it is ineffective to design a UASB reactor with a longer HRT to cope with organic shock loads.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 299-305 ◽  
Author(s):  
R.C. Leitão ◽  
J.A. Silva-Filho ◽  
W. Sanders ◽  
A.C. van Haandel ◽  
G. Zeeman ◽  
...  

In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6 h.


2006 ◽  
Vol 54 (2) ◽  
pp. 223-229 ◽  
Author(s):  
L. Seghezzo ◽  
C.M. Cuevas ◽  
A.P. Trupiano ◽  
R.G. Guerra ◽  
S.M. González ◽  
...  

The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks and digested sludge from conventional sludge digesters was also measured for comparison purposes. Kinetic parameters like the hydrolysis rate constant and the decay rate constant were calculated. High stability was observed in sludge from UASB reactors. Methanogenic activity in anaerobic sludges was relatively low, probably due to the low organic matter concentration in influent sewage. Knowledge on sludge growth rate, stability, and activity might be very useful to optimize sludge management activities in full-scale UASB reactors.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


2013 ◽  
Vol 33 (2) ◽  
pp. 367-378 ◽  
Author(s):  
Estevão Urbinati ◽  
Rose M. Duda ◽  
Roberto A. de Oliveira

In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.


2012 ◽  
Vol 66 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
G. P. Garcia ◽  
C. L. Souza ◽  
R. M. Glória ◽  
S. Q. Silva ◽  
C. A. L. Chernicharo

This study aimed at the identification of microorganisms present in the scum layer of the settler compartment of upflow anaerobic sludge blanket (UASB) reactors, and to evaluate their role in the biological oxidation of sulphides. The experiments were conducted using scum samples taken from two pilot-scale UASB reactors, both treating domestic wastewater. Microorganisms similar to Beggiatoa sp., Thiotrix sp. and species of cyanobacteria were identified based on their morphology, and most of them have been shown to be capable of carrying out sulphur oxidation. Tests of biological oxidation of sulphides using scum and cultures of the cyanobacteria Phormidium and Pseudoanabaena showed a significant decrease in the concentrations of the sulphides, suggesting that the microorganisms present in the scum layer can play a role in the minimization of odour emissions.


2011 ◽  
Vol 64 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Tarek Elmitwalli ◽  
Ralf Otterpohl

The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14–25 °C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 °C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from ‘Flintenbreite’ settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 °C, total chemical oxygen demand (CODt) removal of 52–64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31–41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22–36 and 10–24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31–64%) than the septic tank (11–14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20–30 °C, while a HRT of 12–24 h can be applied at temperature lower than 20 °C.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 227-234 ◽  
Author(s):  
E.S.M. Borges ◽  
V.M. Godinho ◽  
C.A.L. Chernicharo

The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.


1999 ◽  
Vol 40 (8) ◽  
pp. 91-97 ◽  
Author(s):  
D. Jeison ◽  
R. Chamy

In the present study an upflow anaerobic sludge blanket (UASB) reactor and an expanded granular sludge bed (EGSB) reactor were operated with different substrates under the same conditions. Ethanol, diluted beer (as a brewery effluent model) and wastewater from a coffee industry were tested. Ethanol was fed at two different concentrations: 0.5 and 10 gCOD/l. Beer was diluted to a concentration of 3gCOD/l and coffee wastewater had a concentration of approximately 7 gCOD/l. During the operation, samples of sludge were taken from both reactors to measure TSS, VSS, size distribution and methanogenic activity. Batch assays were performed in a third reactor using ethanol at two different superficial velocities to measure substrate uptake. The overall COD removal for ethanol at 500 gCOD/l in EGSB and UASB reactors was similar (around 80% for a sludge loading rate of 0.8 gCOD/day/gVSS). Granular sludge experienced an important development in its characteristics during the operation with ethanol. Superficial velocity showed a positive effect on COD removal for ethanol below 5m/h. There were no big differences in the removal rates during the operation with coffee wastewater. Probably in this effluent the process is limited by the reaction kinetics instead of by the mass transfer, due to the complex nature of the waste. With diluted beer, EGSB reactor showed a better performance than the UASB.


Sign in / Sign up

Export Citation Format

Share Document