Realising sustainable urban water management: Can social theory help?

2013 ◽  
Vol 67 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. J. Bos ◽  
R. R. Brown

It has been acknowledged, in Australia and beyond, that existing urban water systems and management lead to unsustainable outcomes. Therefore, our current socio-technical systems, consisting of institutions, structures and rules, which guide traditional urban water practices, need to change. If a change towards sustainable urban water management (SUWM) practices is to occur, a transformation of our established social-technical configuration that shapes the behaviour and decision making of actors is needed. While some constructive innovations that support this transformation have occurred, most innovations remain of a technical nature. These innovative projects do not manage to achieve the widespread social and institutional change needed for further diffusion and uptake of SUWM practices. Social theory, and its research, is increasingly being recognised as important in responding to the challenges associated with evolving to a more sustainable form of urban water management. This paper integrates three areas of social theories around change in order to provide a conceptual framework that can assist with socio-technical system change. This framework can be utilised by urban water practitioners in the design of interventions to stimulate transitions towards SUWM.

2021 ◽  
Author(s):  
◽  
Robyn Moore

<p>The motivation for this study was to consider how communities might take a more integrated and systematic approach to meeting the challenges of water management in New Zealand, and achieve more sustainable systems. The specific challenges facing a community pursuing sustainable urban water management objectives were examined and solutions sought and tested. Urban water systems, in particular, are under increasing pressure to meet the expectations of communities, with water managers required to articulate sensible management initiatives that secure water supplies and protect water for its intended use, now and in the future. Despite policy and regulation intended to advance outcomes and integrate efforts within the complex area of urban water management, fragmented approaches persist, while a pattern of decline in the quality of New Zealand's water resources remains a cause for concern. Nearly half of urban rates collected in New Zealand apply to water and wastewater management. Thus, this study is concerned with understanding the critical constraints to achieving healthier, more sustainable urban water systems that are affordable for New Zealand communities. The thesis demonstrates the methodology by focusing on Kapiti, a settlement north of Wellington, which has been debating and responding to water quality and security issues for more than a decade. Subsequent to a piloted investigation, a methodological framework was proposed, based on integrating three near complementary perspectives. The Theory of Constraints (TOC) was used with a Stakeholder Typology to identify system stakeholders, capturing and representing their perspectives with Intermediate Objective (IO), Current Reality Tree (CRT) and Prerequisite Trees (PRT), while Causal Loop Diagrams (CLDs) from Systems Dynamics were constructed with some participants to explore and circumvent potential negative outcomes. The combined framework provided a source of deep insights into the challenges, dilemmas, potential solutions and side effects facing resource managers and other stakeholders in an urban water system under pressure from population growth and climatic/topographical conditions. It is possible that the combined theoretical framework can be applied to other resource management cases. The use of the Stakeholder Typology to complement TOC provided a tactical element not routinely evident in systems studies, valuing the experiential and historical perspectives of those who might otherwise be treated as being outside the system, their perspectives marginalised or ignored. The TOC framework offered a logic-based means to identify and invalidate a critical assumption that peak demand would reduce to a level predicted by system managers. Further, the TOC tools were used to focus on and agree the set of conditions necessary to deal with the demand constraint and meet the system goal agreed by the stakeholder participants.</p>


2021 ◽  
Author(s):  
◽  
Robyn Moore

<p>The motivation for this study was to consider how communities might take a more integrated and systematic approach to meeting the challenges of water management in New Zealand, and achieve more sustainable systems. The specific challenges facing a community pursuing sustainable urban water management objectives were examined and solutions sought and tested. Urban water systems, in particular, are under increasing pressure to meet the expectations of communities, with water managers required to articulate sensible management initiatives that secure water supplies and protect water for its intended use, now and in the future. Despite policy and regulation intended to advance outcomes and integrate efforts within the complex area of urban water management, fragmented approaches persist, while a pattern of decline in the quality of New Zealand's water resources remains a cause for concern. Nearly half of urban rates collected in New Zealand apply to water and wastewater management. Thus, this study is concerned with understanding the critical constraints to achieving healthier, more sustainable urban water systems that are affordable for New Zealand communities. The thesis demonstrates the methodology by focusing on Kapiti, a settlement north of Wellington, which has been debating and responding to water quality and security issues for more than a decade. Subsequent to a piloted investigation, a methodological framework was proposed, based on integrating three near complementary perspectives. The Theory of Constraints (TOC) was used with a Stakeholder Typology to identify system stakeholders, capturing and representing their perspectives with Intermediate Objective (IO), Current Reality Tree (CRT) and Prerequisite Trees (PRT), while Causal Loop Diagrams (CLDs) from Systems Dynamics were constructed with some participants to explore and circumvent potential negative outcomes. The combined framework provided a source of deep insights into the challenges, dilemmas, potential solutions and side effects facing resource managers and other stakeholders in an urban water system under pressure from population growth and climatic/topographical conditions. It is possible that the combined theoretical framework can be applied to other resource management cases. The use of the Stakeholder Typology to complement TOC provided a tactical element not routinely evident in systems studies, valuing the experiential and historical perspectives of those who might otherwise be treated as being outside the system, their perspectives marginalised or ignored. The TOC framework offered a logic-based means to identify and invalidate a critical assumption that peak demand would reduce to a level predicted by system managers. Further, the TOC tools were used to focus on and agree the set of conditions necessary to deal with the demand constraint and meet the system goal agreed by the stakeholder participants.</p>


2011 ◽  
Vol 64 (12) ◽  
pp. 2362-2369 ◽  
Author(s):  
L. Werbeloff ◽  
R. Brown

The unprecedented water scarcity in Australia coincides with the adoption of a new urban water rhetoric. The ‘Security through Diversity’ strategy has been adopted in a number of Australian cities as a new and innovative approach to urban water management. Although this strategy offers a more holistic approach to urban water management, in practice, the Security through Diversity strategy is largely being interpreted and implemented in a way that maintains the historical dependence on large scale, centralised water infrastructure and therefore perpetuates existing urban water vulnerabilities. This research explores the implementation of Security through Diversity as the new water scarcity response strategy in the cities of Perth and Melbourne. Through a qualitative study with over sixty-five urban water practitioners, the results reveal that the practitioners have absorbed the new Security through Diversity language whilst maintaining the existing problem and solution framework for urban water management. This can be explained in terms of an entrenched technological path dependency and cognitive lock-in that is preventing practitioners from more comprehensively engaging with the complexities of the Security through Diversity strategy, which is ultimately perpetuating the existing vulnerability of our cities. This paper suggests that greater engagement with the underlying purpose of the security though diversity strategy is a necessary first step to overcome the constraints of the traditional technological paradigm and more effectively reduce the continued vulnerability of Australian cities.


2005 ◽  
Vol 51 (10) ◽  
pp. 317-325 ◽  
Author(s):  
A.G. Fane ◽  
S.A. Fane

Decentralized wastewater treatment has the potential to provide sanitation that meets criteria for sustainable urban water management in a manner that is less resource intensive and more cost effective than centralized approaches. It can facilitate water reuse and nutrient recovery and can potentially reduce the ecological risks of wastewater system failure and the community health risk in a wastewater reuse scheme. This paper examines the potential role of membrane technology in sustainable decentralized sanitation. It is argued that the combination of membrane technology within decentralized systems can satisfy many of the criteria for sustainable urban water management. In particular, the role of membranes as a dependable barrier in the wastewater treatment process can increase system reliability as well as lowering the latent risks due to wastewater reuse. The modular nature of membranes will allow plant size to range from single dwellings, through clusters to suburb size. It is concluded that realization of the potential for membrane-based technologies in decentralized wastewater treatment will require some progress both technically and institutionally. The areas where advances are necessary are outlined.


Sign in / Sign up

Export Citation Format

Share Document