scholarly journals Shaping More Sustainable Communities: a Case Study in Urban Water Management

2021 ◽  
Author(s):  
◽  
Robyn Moore

<p>The motivation for this study was to consider how communities might take a more integrated and systematic approach to meeting the challenges of water management in New Zealand, and achieve more sustainable systems. The specific challenges facing a community pursuing sustainable urban water management objectives were examined and solutions sought and tested. Urban water systems, in particular, are under increasing pressure to meet the expectations of communities, with water managers required to articulate sensible management initiatives that secure water supplies and protect water for its intended use, now and in the future. Despite policy and regulation intended to advance outcomes and integrate efforts within the complex area of urban water management, fragmented approaches persist, while a pattern of decline in the quality of New Zealand's water resources remains a cause for concern. Nearly half of urban rates collected in New Zealand apply to water and wastewater management. Thus, this study is concerned with understanding the critical constraints to achieving healthier, more sustainable urban water systems that are affordable for New Zealand communities. The thesis demonstrates the methodology by focusing on Kapiti, a settlement north of Wellington, which has been debating and responding to water quality and security issues for more than a decade. Subsequent to a piloted investigation, a methodological framework was proposed, based on integrating three near complementary perspectives. The Theory of Constraints (TOC) was used with a Stakeholder Typology to identify system stakeholders, capturing and representing their perspectives with Intermediate Objective (IO), Current Reality Tree (CRT) and Prerequisite Trees (PRT), while Causal Loop Diagrams (CLDs) from Systems Dynamics were constructed with some participants to explore and circumvent potential negative outcomes. The combined framework provided a source of deep insights into the challenges, dilemmas, potential solutions and side effects facing resource managers and other stakeholders in an urban water system under pressure from population growth and climatic/topographical conditions. It is possible that the combined theoretical framework can be applied to other resource management cases. The use of the Stakeholder Typology to complement TOC provided a tactical element not routinely evident in systems studies, valuing the experiential and historical perspectives of those who might otherwise be treated as being outside the system, their perspectives marginalised or ignored. The TOC framework offered a logic-based means to identify and invalidate a critical assumption that peak demand would reduce to a level predicted by system managers. Further, the TOC tools were used to focus on and agree the set of conditions necessary to deal with the demand constraint and meet the system goal agreed by the stakeholder participants.</p>

2021 ◽  
Author(s):  
◽  
Robyn Moore

<p>The motivation for this study was to consider how communities might take a more integrated and systematic approach to meeting the challenges of water management in New Zealand, and achieve more sustainable systems. The specific challenges facing a community pursuing sustainable urban water management objectives were examined and solutions sought and tested. Urban water systems, in particular, are under increasing pressure to meet the expectations of communities, with water managers required to articulate sensible management initiatives that secure water supplies and protect water for its intended use, now and in the future. Despite policy and regulation intended to advance outcomes and integrate efforts within the complex area of urban water management, fragmented approaches persist, while a pattern of decline in the quality of New Zealand's water resources remains a cause for concern. Nearly half of urban rates collected in New Zealand apply to water and wastewater management. Thus, this study is concerned with understanding the critical constraints to achieving healthier, more sustainable urban water systems that are affordable for New Zealand communities. The thesis demonstrates the methodology by focusing on Kapiti, a settlement north of Wellington, which has been debating and responding to water quality and security issues for more than a decade. Subsequent to a piloted investigation, a methodological framework was proposed, based on integrating three near complementary perspectives. The Theory of Constraints (TOC) was used with a Stakeholder Typology to identify system stakeholders, capturing and representing their perspectives with Intermediate Objective (IO), Current Reality Tree (CRT) and Prerequisite Trees (PRT), while Causal Loop Diagrams (CLDs) from Systems Dynamics were constructed with some participants to explore and circumvent potential negative outcomes. The combined framework provided a source of deep insights into the challenges, dilemmas, potential solutions and side effects facing resource managers and other stakeholders in an urban water system under pressure from population growth and climatic/topographical conditions. It is possible that the combined theoretical framework can be applied to other resource management cases. The use of the Stakeholder Typology to complement TOC provided a tactical element not routinely evident in systems studies, valuing the experiential and historical perspectives of those who might otherwise be treated as being outside the system, their perspectives marginalised or ignored. The TOC framework offered a logic-based means to identify and invalidate a critical assumption that peak demand would reduce to a level predicted by system managers. Further, the TOC tools were used to focus on and agree the set of conditions necessary to deal with the demand constraint and meet the system goal agreed by the stakeholder participants.</p>


2014 ◽  
Vol 1 (2) ◽  
pp. 22-38
Author(s):  
Robyn M. Moore ◽  
Victoria J. Mabin

Addressing the problem of reaching consensus on water reforms was the motive for this operational research. Living up to its ‘clean and green' image is a significant goal for New Zealand, with high economic value derived from the effects of its globally-recognised environmental credentials on key exports like agriculture, forestry, fisheries and tourism. A 2009 government task force (Fresh Start for Fresh Water) suggested that a ‘business as usual' approach is undesirable, and water reform should be a priority. This paper is an account of a community-focused systems study undertaken for a Master's thesis in 2008/9. It examines the challenges and opportunities facing Kapiti, a rapidly growing coastal community, with water scarcity and quality constraints that had long prevented them from meeting their sustainable development objectives. The Theory of Constraints (TOC) and a stakeholder typology were used to identify system stakeholders and examine their perspectives, while Causal Loop Diagrams (CLDs) from Systems Dynamics were constructed to explore and circumvent potential negative outcomes. Thus, a case study in a community resource management setting is described that tests the effectiveness of the combined problem-structuring framework, to explicitly inform urban water management, and water reform, in New Zealand.


2013 ◽  
Vol 67 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. J. Bos ◽  
R. R. Brown

It has been acknowledged, in Australia and beyond, that existing urban water systems and management lead to unsustainable outcomes. Therefore, our current socio-technical systems, consisting of institutions, structures and rules, which guide traditional urban water practices, need to change. If a change towards sustainable urban water management (SUWM) practices is to occur, a transformation of our established social-technical configuration that shapes the behaviour and decision making of actors is needed. While some constructive innovations that support this transformation have occurred, most innovations remain of a technical nature. These innovative projects do not manage to achieve the widespread social and institutional change needed for further diffusion and uptake of SUWM practices. Social theory, and its research, is increasingly being recognised as important in responding to the challenges associated with evolving to a more sustainable form of urban water management. This paper integrates three areas of social theories around change in order to provide a conceptual framework that can assist with socio-technical system change. This framework can be utilised by urban water practitioners in the design of interventions to stimulate transitions towards SUWM.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1106 ◽  
Author(s):  
Magnus Moglia ◽  
Stephen Cook

Sustainable Urban Water Management (SUWM) approaches highlighted in this special issue have the potential to contribute to the transformation of urban water systems. The aim of the transformation is to accommodate population and economic growth and at the same time enable a system which is environmentally sustainable and resilient to future challenges such as climate change. These approaches have increasingly entered mainstream dialogue over the last ten years as knowledge on the approaches has developed, and there is an acceptance that there needs to be a change to how urban water systems are designed and operated. However, there are still a range of aspects of these approaches that are maturing and require further research to realize the objectives of SUWM. The issue explored supply-side interventions, such as rainwater harvesting and stormwater harvesting, demand-side interventions, and water storage solutions that have the potential to enable a range of recycling technologies. The issue also highlighted a novel method for better managing the integrity of a conventional sewer system. Furthermore, there are articles that explore methods for integrated assessments, integrated decision making and an exploration of what factors may promote community adoption of technology.


2020 ◽  
Author(s):  
Tom Hawxwell ◽  
Joerg Knieling

&lt;p&gt;Diverse concepts have emerged in recent decades which (at least in their rhetoric) aim to instigate processes that make cities more resilient to climate change and support more sustainable urban development (Coaffee and Lee 2016; Hodson and Marvin 2017). With regards to urban water management, the Water-Sensitive City (WSC) is one such concept that promotes urban water planning to &amp;#8220;protect, maintain and enhance the multiple benefits and services of the total urban water cycle that are highly valued by society&amp;#8221; (Wong and Brown 2009, 674). The WSC, along with related integrated urban water management concepts have seen growing scholarly attention in recent years (see e.g. Fletcher et al. 2015). The emergence of such concepts reflects the growing demand for more sophisticated and integrated understanding and management of urban water systems. Such an ambitious model represents a broadening of the competencies and responsibilities of practitioners involved in water management and improved coordination with other urban sectors. Thus, such changes (must) typically coincide with changes amongst actors engaged directly or indirectly in water management, along with the prevailing institutional arrangements that govern their activities.&lt;/p&gt; &lt;p&gt;Yet very little is known about processes of institutionalisation of such concepts within socio-technical regimes such as those that characterise urban water systems (Fuenfschilling and Truffer 2014). This paper aims to map processes of institutionalisation of concepts associated with the Water-Sensitive City amongst practitioners working in urban water management related fields in the Free and Hanseatic City of Hamburg. The research explores changes in the institutional arrangements between 1990 and 2020.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;Coaffee, J., and P. Lee. 2016. &lt;em&gt;Urban Resilience:&lt;/em&gt; &lt;em&gt;Planning for Risk, Crisis and Uncertainty&lt;/em&gt;. Macmillan International Higher Education.&lt;/p&gt; &lt;p&gt;Fletcher, T. D., W. Shuster, W. F. Hunt, R. Ashley, D. Butler, S. Arthur, S. Trowsdale, et al. 2015. &amp;#8216;SUDS, LID, BMPs, WSUD and More &amp;#8211; The Evolution and Application of Terminology Surrounding Urban Drainage&amp;#8217;. &lt;em&gt;Urban Water Journal&lt;/em&gt; 12 (7): 525&amp;#8211;42. https://doi.org/10.1080/1573062X.2014.916314.&lt;/p&gt; &lt;p&gt;Fuenfschilling, L., and B. Truffer. 2014. &amp;#8216;The Structuration of Socio-Technical Regimes - Conceptual Foundations from Institutional Theory&amp;#8217;. &lt;em&gt;Research Policy&lt;/em&gt; 43 (4): 772&amp;#8211;91. https://doi.org/10.1016/j.respol.2013.10.010.&lt;/p&gt; &lt;p&gt;Hodson, M., and S. Marvin. 2017. &amp;#8216;Intensifying or Transforming Sustainable Cities? Fragmented Logics of Urban Environmentalism&amp;#8217;. &lt;em&gt;Local Environment&lt;/em&gt; 22 (sup1): 8&amp;#8211;22. https://doi.org/10.1080/13549839.2017.1306498.&lt;/p&gt; &lt;p&gt;Wong, T. H. F., and R. R. Brown. 2009. &amp;#8216;The Water Sensitive City: Principles for Practice&amp;#8217;. &lt;em&gt;Water Science and Technology&lt;/em&gt; 60 (3): 673&amp;#8211;82. https://doi.org/10.2166/wst.2009.436.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt;


2009 ◽  
Vol 60 (2) ◽  
pp. 311-320 ◽  
Author(s):  
R. E. de Graaf ◽  
R. J. Dahm ◽  
J. Icke ◽  
R. W. Goetgeluk ◽  
S. J. T. Jansen ◽  
...  

Worldwide, the need for transformative change in urban water management is acknowledged by scientists and policy makers. The effects of climate change and developments such as urbanization, the European Water Framework Directive, and societal concerns about the sustainability of urban water system force the sector to adapt. In The Netherlands, a shift towards integration of spatial planning and water management can be observed. Despite major changes in water management policy and approach, changes in the physical urban water management infrastructure remain limited to incremental solutions and demonstration projects. Policy studies show that institutional factors and professional perceptions are important factors for application of innovations in urban water management. An online survey among Dutch urban water management professionals demonstrates that according to most respondents, optimization of the current system is sufficient to achieve both European and national objectives for sustainable urban water management. The respondents are most concerned with the effects of climate change on urban water systems. In contrast to current policy of the national government, priority factors that should be addressed to achieve a more sustainable urban water system are improving knowledge of local urban water systems, capacity building, developing trust between stakeholders, and improving involvement of elected officials and citizens.


2011 ◽  
Vol 64 (12) ◽  
pp. 2362-2369 ◽  
Author(s):  
L. Werbeloff ◽  
R. Brown

The unprecedented water scarcity in Australia coincides with the adoption of a new urban water rhetoric. The ‘Security through Diversity’ strategy has been adopted in a number of Australian cities as a new and innovative approach to urban water management. Although this strategy offers a more holistic approach to urban water management, in practice, the Security through Diversity strategy is largely being interpreted and implemented in a way that maintains the historical dependence on large scale, centralised water infrastructure and therefore perpetuates existing urban water vulnerabilities. This research explores the implementation of Security through Diversity as the new water scarcity response strategy in the cities of Perth and Melbourne. Through a qualitative study with over sixty-five urban water practitioners, the results reveal that the practitioners have absorbed the new Security through Diversity language whilst maintaining the existing problem and solution framework for urban water management. This can be explained in terms of an entrenched technological path dependency and cognitive lock-in that is preventing practitioners from more comprehensively engaging with the complexities of the Security through Diversity strategy, which is ultimately perpetuating the existing vulnerability of our cities. This paper suggests that greater engagement with the underlying purpose of the security though diversity strategy is a necessary first step to overcome the constraints of the traditional technological paradigm and more effectively reduce the continued vulnerability of Australian cities.


2010 ◽  
Vol 10 (4) ◽  
pp. 618-628 ◽  
Author(s):  
A. N. Angelakis ◽  
D. S. Spyridakis

The evolution of urban water management in ancient Greece begins in Crete during the Middle Bronze and the beginning of the Late Bronze Ages (ca. 2000–1500 B.C.) when many remarkable developments occurred in several stages as Minoan civilization flourished on the island. One of its salient characteristics was the architectural and hydraulic function of its water supply and sewerage systems in the Minoan Palaces and several other settlements. These technologies, though they do not give a complete picture of water supply and wastewater and storm water technologies in ancient Greece, indicate nevertheless that such technologies have been used in Greece since prehistoric times. Minoan water and wastewater technologies were diffused to the Greek mainland in the subsequent phases of Greek civilization, i.e. in the Mycenaean, Archaic, Classical, Hellenistic and Roman periods. The scope of this article is the presentation of the most characteristic forms of ancient hydraulic works and related technologies and their uses in past Greek civilizations.


Sign in / Sign up

Export Citation Format

Share Document