Performance evaluation of a novel open trickling filter for the post-treatment of anaerobic effluents from small communities

2013 ◽  
Vol 67 (12) ◽  
pp. 2746-2752 ◽  
Author(s):  
P. C. Vieira ◽  
M. von Sperling ◽  
L. C. M. Nogueira ◽  
B. F. S. Assis

The objective of the work is to evaluate the performance of an innovative design of a trickling filter for small population sizes, which has been implemented for the post-treatment of sanitary effluent from a UASB (upflow anaerobic sludge blanket) reactor. The unit, named open trickling filter (OTF), operates with no side walls, no perforated bottom slab and no secondary settler. The OTF packing was 3.5 m high, composed of crushed stone, with a fixed distribution system made of channels with V-notch weirs. The OTF was operated with mean surface hydraulic loading rates of 4.1 and 9.3 m3 m−2 d−1, corresponding to population equivalents of approximately 250 and 550 inhabitants, respectively. For the surface hydraulic loading rate of 4.1 m3 m−2 d−1, the median removal efficiencies obtained by the OTF and overall system (UASB + OTF) were, respectively, 24 and 83% for total suspended solids (TSS), 44 and 79% for chemical oxygen demand (COD), 42 and 82% for biochemical oxygen demand (BOD), 40 and 40% for N-ammonia. For the surface hydraulic loading rate of 9.3 m3 m−2 d−1, the median removal efficiencies obtained by the OTF and global system (UASB + OTF) were 14 and 76% for TSS, 28 and 76% for COD, 25 and 86% for BOD, 15 and 15% for N-ammonia. Considering the great simplicity, no mechanization and small footprint of the system, these results can be considered satisfactory, suggesting that the OTF is suitable for small communities, especially in developing countries.

2012 ◽  
Vol 2 (2) ◽  
pp. 59-67 ◽  
Author(s):  
P. C. Vieira ◽  
M. von Sperling

We aimed to evaluate the performance and cost savings of an innovative design of a trickling filter (TF) for small population sizes, developed at the Federal University of Minas Gerais, Brazil referred to as an open trickling filter (OTF). The OTF had no side walls and no perforated bottom slab, and was applied for the post-treatment of sanitary sewage from an upflow anaerobic sludge blanket (UASB) reactor. The OTF had crushed-stone packing (3.5 m high) and was operated with an average surface hydraulic loading rate of 4.1 m3 m−2 d−1 and an average volumetric organic loading rate of 0.10 kg BOD m−3 d−1 (biochemical oxygen demand). The average concentrations obtained at the OTF effluent were 48 mg TSS L−1 (total suspended solids), 132 mg COD L−1 (chemical oxygen demand), 51 mg BOD L−1, 19 mg TKN L−1 (total Kjeldahl nitrogen), 16 mg NH4+-N L−1 and 10 mg NO3−-N L−1, complying with local discharge standards. Analysis of the construction costs indicated savings of 74% compared to conventional TF. Based on the performance, compactness, simplicity and reduced capital costs, it is believed that the proposed OTF is a good alternative for small communities, especially in developing countries.


2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


2017 ◽  
Vol 12 (1) ◽  
pp. 1-11 ◽  
Author(s):  
D. F. C. Dias ◽  
M. P. de Matos ◽  
R. G. Passos ◽  
V. A. J. Rodrigues ◽  
M. von Sperling

The study covers different investigations related to the upgrading of a post-treatment system for the effluent from a upflow anaerobic sludge blanket reactor. The original post-treatment scheme comprised three ponds in series and a small coarse rock filter inserted in the last pond. Upgrading involved reducing the pond depths, applying baffles in the second pond and converting all of the third pond into a rock filter (three decreasing grain sizes). The system was conceived for 250 population equivalents, occupied an area of only 1.5 m2/inhabitant and aimed at very good removals of all major wastewater constituents. Overall final effluent concentrations for Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS) were very good, and lower than those from the previous treatment line. Hydraulic flow patterns in both ponds showed daily thermal stratification and destratification periods. The conversion of the third pond into a rock filter increased the removal capacity of TSS (algae), but could potentially result in clogging, a phenomenon that was evaluated by a geophysical method called Georadar. The influence of accumulated sludge on treatment performance was tested before starting the operation of the upgraded system by operating the two ponds in parallel (one with sludge accumulated after 11 years of operation and the other without sludge). In this test, ammonia removal was virtually the same in both ponds.


2018 ◽  
Vol 78 (4) ◽  
pp. 848-859 ◽  
Author(s):  
Jorge A. García Zumalacarregui ◽  
Marcos von Sperling

Abstract The technology of vertical flow constructed wetlands – French system for treating raw wastewater depends on several hydraulic factors, one of them being the duration of the pulse feeding and the resulting instantaneous hydraulic loading rate. This paper analyses two scenarios in the same system, the first of a faster feeding by pump and the second of a slower feeding by siphon, both with instantaneous hydraulic loading rate values lower than the literature recommendations. The system treated raw wastewater from a population equivalent of 100 p.e. in Brazil, and was comprised by only the first stage and two units in parallel. The shorter duration of feeding time and higher instantaneous hydraulic loading rate were associated with significantly higher chemical oxygen demand and total Kjeldahl nitrogen removal efficiencies, but with no significant differences in terms of biochemical oxygen demand (BOD) and suspended solids (SS). Oxygen concentrations and redox potential in the effluent were evaluated, together with the effluent flow rate profiles. The removal efficiencies were associated with the accumulation of solids in the upper part of the filter resulting from seven years of operation and to the operating hydraulic conditions, which are important elements in the performance of the system.


Author(s):  
Anwar Ahmad ◽  
Rumana Ghufran ◽  
Zularisam Abd. Wahid

Palm oil Mill Effluent (POME) with concentrated butyrate was treated in a 4.5 l upflow anaerobic sludge blanket reactor (UASBR), run over a range of influent concentrations (16.5–46.0 g-COD l−1), chemical oxygen demand (COD) loading rates (1.5–11.5 g-CODl−1d−1) and 11–4 days hydraulic retention time (HRT) at 37 °C by maintaining pH between 6.5–7.5. The process consistently removed 97–99% of COD at loading rates up to 1.5–4.8 g-COD l−1d−1 by varying HRT (11–7.2 days). Butyrate is an important intermediate in the anaerobic degradation of organic matter. In sulphate-depleted environment, butyrate in POME (BOD/COD ratio of 0.5) is β-oxidised to acetate and hydrogen, by obligate proton reducers in syntrophic association with hydrogen utilizing methanogens. The conversion of acetate to methane appeared to be rate limiting step. Maximum biogas (20.17 ll−1d−1) and methane production (16.2 ll−1d−1) were obtained at COD loading rate of 4.80 gl−1d−1and HRT of 7.2 days. The biogas and methane production were higher in the presence of butyrate compared to control. The methane content of the biogas was in the range of 70–80% throughout the study while in control it was 60–65%. Finding of this study clearly indicates the successful treatment of POME with butyrate in UASBR. Santrauka Palmių aliejaus gamybinės nuotekos (POME) su koncentruotu butiratu buvo apdorotos 4,5 l talpos aukštyn tekančio aerobinio dumblo plokšteliniame reaktoriuje (UASBR). Nuotekos tekėjo įvairių koncentracijų (16,5–46,0 g – ChDS 1−1), cheminio deguonies suvartojimo (ChDS) normos (1,5–11,5 g – ChDS 1−1d.−1). Hidraulinio sulaikymo trukmė (HRT) nuo 11 iki 4 dienų, kai temperatūra 37 °C, pH palaikant 6,5–7,5. Vykstant procesui nuolat buvo pašalinama 97–99% ChD, kai tiekimo ir pakrovimo sparta 1,5–4,8 g – ChDS 1−1d.−1 kintant HRT(11–7,2 d.). Butiratas yra svarbus tarpininkas organinių medžiagų anaerobinio skilimo procese. Sulfatas iš aplinkos, butiratas iš POME (BDS/ChDS santykis 0,5) yra acetato ir vandenilio β oksidatoriai, priverčiantys protonų reducentus sintrofinės sąveikos su vandeniliu metu utilizuoti metanogenus. Acetato virtimas metanu pasirodė esąs greitį ribojantis veiksnys. Daugiausia biodujų (20,17 l 1−1 d.−1) ir metano (16,2 l 1−1 d.−1) susidarė tada, kai suvartojamo ChD tiekimo greitis buvo 4,80 g 1−1d.−1, o HRT – 7,2 dienos. Daugiau biodujų ir metano susidarė dalyvaujant butiratui, palyginti su kontroliniu pavyzdžiu. Biodujose metano kiekis tyrimo metu svyravo 70–80%, o kontroliniame buvo 60–65%. Šis tyrimas aiškiai parodė, kad POME su butiratu UASBreaktoriuje apdorojamas sėkmingai.


2013 ◽  
Vol 68 (7) ◽  
pp. 1495-1502 ◽  
Author(s):  
Jocilene Ferreira da Costa ◽  
André Cordeiro de Paoli ◽  
Martin Seidl ◽  
Marcos von Sperling

A system composed of two horizontal subsurface flow constructed wetlands operating in parallel was evaluated for the post-treatment of UASB (upflow anaerobic sludge blanket) reactor effluent, for a population equivalent of 50 inhabitants per unit. One unit was planted with cattail (Typha latifolia) and the other was unplanted. The study was undertaken over a period of 4 years, comprising monitoring of influent and effluent constituents together with a full characterization of the behaviour of the units (tracer studies, mathematical modelling of chemical oxygen demand (COD) decay, characterization of solids in the filter medium). The mean value of the surface hydraulic load was 0.11 m3m−2d−1, and the theoretical hydraulic retention time was 1.1 d in each unit. Using tracer tests with 82Br, dispersion number (d) values of 0.084 and 0.079 for the planted and unplanted units were obtained, indicating low to moderate dispersion. The final effluent had excellent quality in terms of organic matter and suspended solids, but the system showed low capacity for nitrogen removal. Four-year mean effluent concentration values from the planted and unplanted units were, respectively: biochemical oxygen demand (BOD5): 25 and 23 mg L−1; COD: 50 and 55 mg L−1; total suspended solids (TSS): 9 and 9 mg L−1; N-ammonia: 27 and 28 mg L−1. The COD decay coefficient K for the traditional plug-flow model was 0.81 and 0.84 d−1 for the planted and unplanted units. Around 80% of the total solids present in the filter medium were inorganic, and most of them were present in the interstices rather than attached to the support medium. As an overall conclusion, horizontal subsurface flow wetlands can be a very suitable post-treatment method for municipal effluents from anaerobic reactors.


1994 ◽  
Vol 30 (4) ◽  
pp. 97-104 ◽  
Author(s):  
Herbert H. P. Fang ◽  
Tin-Sang Kwong

The study was conducted over 265 days to study the feasibility of removing starch particulates from wastewater using an 8.5 L reactor which was a hybrid between the upflow anaerobic sludge blanket (UASB) and the anaerobic filter reactors. At pH 7.2-7.5 and 37°C, the reactor was effective for the removal of chemical oxygen demand (COD) from wastewater containing starch particulates equivalent to 5000 mglL of COD with 12 hours of retention time, corresponding to a loading rate of 10 g-COD/L.d. Despite their insoluble nature, the starch particulates did not cause noticeable adverse effeels on the granulation of biomass, probably due to its easy-to-biodegrade nature and the cautious startup strategy. About 5.8% of COD in wastewater remained in the effluent, 82.5% was converted to methane, and the remaining 11.7% was converted to granular biomass with an average sludge yield of 0.09 g-VSS/g-COD. The granules exhibited a layered microstructure. The methanogenic activity of the granular biomass was 0.86 g-methane-COD/g-VSS.d in the reactor, which was considerably lower than the 1.96 g-methane-COD/ g-VSS.d measured in serum vials with an abundant supply of substrate, suggesting that further increase of loading rates was possible for the hybrid reactor.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Patcharee Intanoo ◽  
Sumaeth Chavadej ◽  
Oijai Khongsumran

The main objective was to separately generate biohydrogen (H2) and biomethane (CH4) with the cassava wastewater via the upflow anaerobic sludge blanket reactors (UASB) under the mesophilic temperature (37 ºC). For the first part, the production of H2, the controlled system was managed on the fixed temperature (37 º C) and pH (5.5) included the varied organic concentration in term of chemical oxygen demand (COD) loading rates. As the proper COD loading rate of 25 kg/m3 d, H2 and carbon dioxide (CO2) were mainly generated gases which provided the highest specific H2 production rate of 0.39 l H2/l d and the highest H2 yield of 39.83 l H2/kg COD removed. For the second part, the effluent liquid that generated from the stage of H2 production on COD loading rate of 25 kg/m3 d was fed to the UASB with the fixed temperature (37 °C) and no pH control. The highest specific CH4 production rate of 0.91 l CH4/l d and the highest CH4 yield of 115.23 l CH4/kg COD removed were shown on the proper COD loading rate of 8 kg/m3 d.  


2016 ◽  
Vol 74 (1) ◽  
pp. 65-72 ◽  
Author(s):  
N. Maharjan ◽  
K. Kuroda ◽  
K. Dehama ◽  
M. Hatamoto ◽  
T. Yamaguchi

In this study, conventional slow sand filter (SSF) and modified slow sponge sand filter (SpSF) were investigated for the post-treatment of up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) reactor effluent. The seasonal variation did not show significant differences in removal efficiencies of both filters. However in summer, both filters were able to achieve high total suspended solids and total biochemical oxygen demand removal averaging 97% and 99%, respectively. Contrary to organic removal, total nitrogen removal efficiency was satisfactory, showing increased removal efficiencies averaging 58% and 62% for SSF and SpSF in summer. On the other hand, average total coliform removal of SSF and SpSF was 4.2 logs and 4.4 logs and corresponding Escherichia coli removal was 4.0 logs and 4.1 logs, respectively. From our observation, it could be concluded that the relative performance of SpSF for nutrients and coliforms was better than SSF due to the effectiveness of sponge media over fine sands. Moreover, microbial community analysis revealed that the members of phylum Proteobacteria were predominant in the biofilms of both filters, which could have contributed to pollutant removal. Therefore, SpSF could be concluded to be a suitable post-treatment of UASB-DHS system in warmer conditions.


2013 ◽  
Vol 68 (3) ◽  
pp. 650-657 ◽  
Author(s):  
E. F. A. Mac Conell ◽  
P. G. S. Almeida ◽  
A. M. Zerbini ◽  
E. M. F. Brandt ◽  
J. C. Araújo ◽  
...  

Changes in ammonia-oxidizing bacterial (AOB) population dynamics were examined in a new sponge-based trickling filter (TF) post-upflow anaerobic sludge blanket (UASB) reactor by denaturating gradient gel electrophoresis (DGGE), and these changes were linked to relevant components influencing nitrification (chemical oxygen demand (COD), nitrogen (N)). The sponge-based packing media caused strong concentration gradients along the TF, providing an ecological selection of AOB within the system. The organic loading rate (OLR) affected the population dynamics, and under higher OLR or low ammonium-nitrogen (NH4+-N) concentrations some AOB bands disappeared, but maintaining the overall community function for NH4+-N removal. The dominant bands present in the upper portions of the TF were closely related to Nitrosomonas europaea and distantly affiliated to Nitrosomonas eutropha, and thus were adapted to higher NH4+-N and organic matter concentrations. In the lower portions of the TF, the dominant bands were related to Nitrosomonas oligotropha, commonly found in environments with low levels of NH4+-N. From a technology point of view, changes in AOB structure at OLR around 0.40–0.60 kgCOD m−3 d−1 did not affect TF performance for NH4+-N removal, but AOB diversity may have been correlated with the noticeable stability of the sponge-based TF for NH4+-N removal at low OLR. This study is relevant because molecular biology was used to observe important features of a bioreactor, considering realistic operational conditions applied to UASB/sponge-based TF systems.


Sign in / Sign up

Export Citation Format

Share Document