Removal of transition metal ions from aqueous solution using dialdehyde phenylhydrazine starch as adsorbent

2013 ◽  
Vol 69 (3) ◽  
pp. 479-485 ◽  
Author(s):  
Rou Wang ◽  
Jun-Tao Liu ◽  
Chun-Yang Li ◽  
Rong Li

Dialdehyde phenylhydrazine starch (DASPH) was synthesized by reacting dialdehyde starch (DAS) with phenylhydrazine (PH) and it was characterized by Brunauer–Emmett–Teller (BET), scanning electron microscope, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques. FT-IR of DASPH revealed the incorporation of the Schiff Base group (C = N) group and the disappearance of the C = O (carbonyl) group. The adsorption behaviors of transition metal ions (Cd2+, Zn2+, Pb2+ and Cu2+) were investigated as a function of pH and adsorption time. The results indicated that pH 5.0 and 120 min were the optimal conditions. Experimental results revealed that the maximum adsorption capacity of DASPH for the four transition metal ions was as follows: Cd2+ (4.9 mmol/g) > Zn2+ (3.3 mmol/g) >Pb2+ (1.7 mmol/g) >Cu2+ (0.83 mmol/g). In addition, the regeneration method of DASPH was also studied.

2014 ◽  
Vol 887-888 ◽  
pp. 388-394 ◽  
Author(s):  
Xin Hua Liu ◽  
Yi Deng ◽  
Yu Chuan Zhang ◽  
Yin Hang Zhou

The structures and optical performances of TiO2doped with 4thperiodic transition metal ions were investigated in this paper. The characterization results of X-ray photoelectron spectroscopy and X-ray diffraction showed that the transition metal ions existed in oxidative states, and composites formed because of the reaction between doped metal ions and TiO2. The absorption spectroscopy of TiO2doped with zinc was mainly in ultraviolet region, close to that of the pure TiO2. While for TiO2doped with other transition metal ions including V, Cr, Mn, Fe, Co, Ni and Cu ions, the absorption spectroscopies covered ultraviolet region and visible light region, much broader than that of the pure TiO2.


2015 ◽  
Vol 3 (24) ◽  
pp. 13031-13038 ◽  
Author(s):  
Gui-Liang Xu ◽  
Yan Qin ◽  
Yang Ren ◽  
Lu Cai ◽  
Ke An ◽  
...  

In situ high-energy X-ray diffraction and neutron diffraction were deployed to trace the migration of transition metal ions in LiNi0.5Mn1.5O4.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Hui Wang ◽  
Qiyun Guan ◽  
Yuchong Liu ◽  
Ying Guo

This study reports the effects of transition metal ions on the colour of blue-green beryl. Industrial cameras were used to measure colour in the CIELAB colour space. X-ray fluorescence (XRF), X-ray diffraction (XRD), infrared spectroscopy (IR), and ultraviolet-visible (UV–vis) spectroscopy were used for characterization. The d–d transition of Fe3+ with sixfold coordination, the O2−→Fe3+ charge transfer, and the charge transition of binuclear metal M–M complexes formed by [Fe2(OH)4]2+ in the channel caused a yellow tone, whereas the charge transfer of Fe2+/Fe3+ with sixfold coordination caused a blue-green tone. The chroma of blue-green beryl was negatively correlated with the ratio of Cs+Mn to Fe contents. The lightness of blue-green beryl was negatively correlated with the total content of transition metal ions.


2013 ◽  
Vol 67 (2) ◽  
pp. 306-310 ◽  
Author(s):  
Wen Ding ◽  
Shen-yong Zhai ◽  
Jun-tao liu ◽  
Rou Wang ◽  
Rong Li

Dialdehyde 8-aminoquinoline starch (DASQA) was synthesized by the reaction of dialdehyde starch (DAS) and 8-aminoquinoline and was used to adsorb various ions from aqueous solution. DASQA was characterized by Fourier transform infrared (FT-IR) spectra, thermogravimetric analysis, X-ray diffraction analysis. The adsorption properties of the polymer for Pb2+, Cu2+, Cd2+, Ni2+, and Zn2+ were investigated. The result of the experiment reveals that the adsorption for Cd2+ and Zn2+were approximately 2.51 mmol/g, 2.17 mmol/g, followed by Pb2+ 1.93 mmol/g, Ni2+ 1.66 mmol/g, Cu2+ 1.19 mmol/g. Furthermore, the kinetic experiments indicated that the adsorption of DASQA for the above metal ions achieved equilibrium within 2 h. Therefore, DASQA is an effective adsorbent for the removal of different heavy metal ions from industrial waste solutions.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Sign in / Sign up

Export Citation Format

Share Document