Effect of continuously dosing Cu(II) on pollutant removal and soluble microbial products in a sequencing batch reactor

2015 ◽  
Vol 72 (9) ◽  
pp. 1653-1661 ◽  
Author(s):  
YangWei Yan ◽  
YuWen Wang ◽  
Yan Liu ◽  
Xiang Liu ◽  
ChenChao Yao ◽  
...  

The effects of synthetic wastewater that contained 20 mg/L Cu(II) on the removal of organic pollutants in a sequencing batch reactor were investigated. Results of continuous 20 mg/L Cu(II) exposure for 120 days demonstrated that the chemical oxygen demand (COD) removal efficiency decreased to 42% initially, followed by a subsequent gradual recovery, which peaked at 78% by day 97. Effluent volatile fatty acid (VFA) concentration contributed 67 to 89% of the influent COD in the experimental reactor, which indicated that the degradation of the organic substances ceased at the VFA production step. Meanwhile, the varieties of soluble microbial products (SMP) content and main components (protein, polysaccharide, and DNA) were discussed to reveal the response of activated sludge to the toxicity of 20 mg/L Cu(II). The determination of Cu(II) concentrations in extracellular polymeric substances (EPS) and SMP throughout the experiment indicated an inverse relationship between extracellular Cu(II) concentration and COD removal efficiency.

2017 ◽  
Vol 75 (11) ◽  
pp. 2639-2648 ◽  
Author(s):  
Yong Zhang ◽  
Wei-Li Jiang ◽  
Yang Qin ◽  
Guo-Xiang Wang ◽  
Rui-Xiao Xu ◽  
...  

This study aimed to investigate the organic removal efficiency and microbial population dynamics in activated sludge with pressurized aeration. The activated sludge was fed with synthetic wastewater composed of simple carbon source to avoid the effect of complex components on microbial communities. The pressurized acclimation process was conducted in a bench-scale sequencing batch reactor (SBR) under 0.3 MPa gage pressure. Another SBR was running in atmospheric environment as a control reactor, with the same operation parameters except for the pressure. Bacterial diversity was investigated by Illumina sequencing technology. The results showed that the total organic carbon removal efficiency of the pressurized reactor was significantly higher, while the mixed liquor suspended solids concentrations were much lower than those of the control reactor. Moderate pressure of 0.3 MPa had little effect on Alpha-diversity of bacterial communities due to the similar running conditions, e.g., feed water, solids retention time (SRT) and the cyclic change of dissolved oxygen (DO) concentrations. Although the relative percentage of the bacterial community changed among samples, there was no major change of predominant bacterial populations between the pressurized group and the control group. Pressurized aeration would have a far-reaching impact on microbial community in activated sludge when treating wastewaters being unfavorable to the dissolution of oxygen.


2021 ◽  
Vol 18 (4) ◽  
pp. 135-140
Author(s):  
Sanju Sreedharan

Zero energy technologies and sustainable energy production are the two major concerns of present day researches. Microbial fuel cells (MFCs) are bioreactors that extract chemical energy stored in organic compounds, into electric potential, through bio-degradation. The core reason for the high strength of effluent generated from slaughterhouses is animal blood. The current study evaluates the potential of MFC technology to reduce the pollution strength of cattle blood in terms of chemical oxygen demand (COD). The current study was piloted in three stages using lab scale two chambered MFC: The first stage was to determine the best oxidising agent as compared to natural aeration from three accessible options, KMnO4, diffused aeration and tape grass aquatic plant. KMnO4 was found to be the superlative with a 30% reduction in COD in 100 hrs batch reactor and a maximum power of 0.97 mW using 125 mL livestock blood. The second stage of the study optimised the concentration of KMnO4. At 500 mg/L KMnO4 concentration, 50% COD removal efficiency was acquired in a batch reactor of 60 hrs with an average energy output of 1.3 mW. In the final stage on the addition of coconut shell activated carbon with an Anolyte at a rate of 40 mL/125 mL of substrate COD removal efficiency increased to 74.9%.


2012 ◽  
Vol 610-613 ◽  
pp. 1691-1695
Author(s):  
Chun Juan Dong ◽  
Qing Ye Pan

Treatment of actual domestic wastewater at ambient temperature, even low temperature is considered to be difficult by traditional systems. The present study is related to treatment of actual domestic wastewater in an EGSB reactor. The study showed the effectiveness of biological treatment of actual domestic wastewater involving appropriate microorganism and granules in an EGSB reactor. At 26°C, the reactor was operated at 18.7kg COD.m−3.d−1 of average organic loading and 83% high COD removal efficiency, and even at the highest loading rate of 57.12kgCOD.m−3.d−1, the COD removal efficiency still could attain to 68%. Varied influent flow need to supply varied optimal and thus to ensure the optimal removal effect. Low temperature would cause pollutant removal rate decrease. However, enhancing could optimize the contact of sludge and wastewater and thus strengthen the performance effect. Modified Stover–Kincannon model was applied to data obtained from experimental studies in EGSB reactor. Treatment efficiencies of the reactor were investigated at different hydraulic retention times (0.5-1.3h) and different operation temperature (15°C, 26°C). The modified Stover–Kincannon model was best fitted to the EGSB reactor, and the substrate utilization rate( ), saturation constant value( ), and actual pollutant removal rate( ) were found to be , , and for 26°C, , , and for 15°C( before increasing ), and , , and for 15°C(after increasing ). Low temperature could cause decrease and thus cause distinct decreasing of COD removal efficiency. However, increasing could increase and accordingly increase COD removal efficiency.


2020 ◽  
Author(s):  
Yichao Wu

<p>Compared with the chemically defined synthetic wastewater (SynWW), real wastewater has been reported to exhibit distinct effects on microbial community development. Whether and how soluble microbial products in real wastewater contribute to different effects of synthetic and real wastewater on the fate of exogenous bacteria remains elusive. In this study, using a model wastewater bacterium <em>Comamonas testosteroni</em>, we first examined the influences of microfiltration filter-sterilized real wastewater (MF-WW) and SynWW on the retention of <em>C. testosteroni</em> in established wastewater flocs during bioaugmentation. In bioreactors fed with MF-WW, augmentation of <em>C. testosteroni</em> to wastewater flocs resulted in a substantially higher abundance of the augmented bacterial cells than those fed with SynWW. To identify the soluble microbial products in MF-WW contributing to the observed differences between bioaugmentation reactors fed with MF-WW and SynWW, we examined the effect of MF-WW and SynWW on the growth, floc formation, and biofilm development of <em>C. testosteroni</em>. When <em>C. testosteroni</em> grew in MF-WW, visible flocs formed within 2 h, which is in contrast to cell growth in SynWW where floc formation was not observed. We further demonstrated that the observed differences were mainly attributed to the high molecular weight fraction of the soluble extracellular polymeric substances (EPS) in MF-WW, in particular, proteins and extracellular DNA. The DLVO analysis suggested that, in the presence of soluble EPS, the bacterial cell surface exhibits an increased hydrophobicity and a diminished energy barrier, leading to irreversible attachment of planktonic cells and floc formation. The RNA-seq based transcriptional analysis revealed that, in the presence of soluble EPS, genes involved in nonessential metabolisms were downregulated while genes coding for Cco (cbb3- type) and Cox (aa3-type) oxidases with different oxygen affinities were upregulated, facilitating bacterial survival in flocs. Taken together, this study reveals the mechanisms underlying the contribution of soluble EPS to the recruitment of exogenous bacteria by microbial aggregates and provides implications to bioaugmentation.</p> <p> </p> <p><strong>References:</strong></p> <ol> <li>Wu, Y., Zaiden, N., Liu, X., Mukherjee, M. and Cao, B., 2020. Responses of Exogenous Bacteria to Soluble Extracellular Polymeric Substances in Wastewater: A Mechanistic Study and Implications on Bioaugmentation. Environmental Science & Technology. In press</li> <li>Wu, Y., Cai, P., Jing, X., Niu, X., Ji, D., Ashry, N.M., Gao, C. and Huang, Q., 2019. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment international, 132, p.105116.</li> </ol>


2014 ◽  
Vol 19 (3) ◽  
pp. 255-259 ◽  
Author(s):  
Orawan Rojviroon ◽  
Thammasak Rojviroon ◽  
Sanya Sirivithayapakorn

2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


2020 ◽  
Vol 9 (1) ◽  
pp. 32-51
Author(s):  
Revanuru Subramanyam

This research article describes start-up performance of an UASB (Upflow Anaerobic Sludge Blanket) reactor in terms of chemical oxygen demand (COD) removal efficiency, biogas production, sludge loading rate (SLR), volatile fatty acids (VFA), pH, alkalinity, total solids (TS) and volatile suspended solids (VSS), fed with synthetic wastewater with increased concentrations of glucose. The reactor was loaded up to an OLR (Organic Loading Rate) of 15 kg COD m-3 d-1 and achieved a COD removal efficiency of 82 ±3%. The results showed that digested seed sludge was successfully acclimatized and transformed finally into granular sludge within a period of 120 days. An increase in the accumulation of VFA at high OLRs showed that methanogenesis could be the rate-limiting step in the reactor operation. The SLR and VSS/TS ratio were increased with an increase in OLR. During the initial stages, uniform distribution of VSS concentration and later on maximum VSS concentration were found at port number two at a height of 350 mm. The carbon balance depicts that the maximum percentage of influent COD converted to methane COD. An increase in specific methanogenic activity values with the age of sludge confirmed the transformation of the seed sludge in to a granular sludge.


2013 ◽  
Vol 39 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Chandrakant Thakur ◽  
Indra Deo Mall ◽  
Vimal Chandra Srivastava

Abstract In the present study, treatment of synthetic wastewater containing phenol, resorcinol and catechol was studied in a sequencing batch reactor (SBR). Parameters such as hydraulic retention time (HRT) and filling time have been optimized to increase the phenol, resorcinol, catechol and chemical oxygen demand (COD) removal efficiencies. More than 99% phenol, 95% resorcinol and 96% catechol and 89% COD removal efficiency was obtained at optimum conditions of HRT = 1.25 d and fill time = 1.5 h. The heating value of the sludge was found to be 12 MJ/kg. The sludge can be combusted to recover its energy value.


2008 ◽  
Vol 58 (4) ◽  
pp. 819-830 ◽  
Author(s):  
N. Sundaresan ◽  
L. Philip

Studies were undertaken on the performance evaluation of three different types of aerobic reactors, namely, activated sludge process, fluidized bed reactor and submerged bed reactor. Initially synthetic wastewater was used for stabilizing the system and later domestic wastewater of IIT Madras was used as the feed for the biological systems. The hydraulic retention time was maintained as 24 h. The seed sludge was collected from IIT Madras sewage treatment plant. The inlet COD to the reactors with synthetic wastewater was 1,000±20 mg/L and with real wastewater, it was 150 to 350 mg/L. The performance of the reactors was evaluated based on the soluble COD and nitrogen removal efficiency. The pH, temperature, dissolved oxygen (DO) and mixed liquid suspended solid (MLSS) concentration were measured periodically. The reactors were acclimatized at 35°C in batch mode and changed to continuous mode at 30°C. After the systems attained its steady state at a particular temperature, the temperature was reduced from 35°C to 5°C stepwise, with each step of 5°C. The start-up time for submerged bed reactor was slightly more than fluidized and conventional activated sludge process. The COD removal efficiency of the three reactors was higher with synthetic wastewaters as compared to actual domestic wastewater. Submerged bed reactor was more robust and efficient as compared to activated sludge and fluidized bed reactors. The COD removal efficiency of the reactors was relatively good until the operating temperature was maintained at 15°C or above. At 10°C, submerged bed reactor was able to achieve 40% COD removal efficiency whereas; the fluidized bed and conventional ASP reactors were showing only 20% COD removal efficiency. At 5°C, almost all the systems failed. Submerged bed reactor showed around 20% COD removal efficiency. However, this reactor was able to regain its 90% of original efficiency, once the temperature was raised to 10°C. At higher temperatures, the nitrification efficiency of the reactors was above 80–90%. As the temperature reduced the nitrification efficiency has reduced drastically. In summary, submerged bed reactors seems to be a better option for treating domestic wastewaters at low temperature regions.


Sign in / Sign up

Export Citation Format

Share Document