scholarly journals Effect of Hydraulic Retention Time and Filling Time on Simultaneous Biodegradation of Phenol, Resorcinol and Catechol in a Sequencing Batch Reactor

2013 ◽  
Vol 39 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Chandrakant Thakur ◽  
Indra Deo Mall ◽  
Vimal Chandra Srivastava

Abstract In the present study, treatment of synthetic wastewater containing phenol, resorcinol and catechol was studied in a sequencing batch reactor (SBR). Parameters such as hydraulic retention time (HRT) and filling time have been optimized to increase the phenol, resorcinol, catechol and chemical oxygen demand (COD) removal efficiencies. More than 99% phenol, 95% resorcinol and 96% catechol and 89% COD removal efficiency was obtained at optimum conditions of HRT = 1.25 d and fill time = 1.5 h. The heating value of the sludge was found to be 12 MJ/kg. The sludge can be combusted to recover its energy value.

2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 171-178 ◽  
Author(s):  
S.-R. Ha ◽  
L. Qishan ◽  
S. Vinitnantharat

Treatment performance of COD in the presence of 2,4-dichlorophenol (2,4-DCP) was explored by using a biological activated carbon-sequencing batch reactor (BAC-SBR) system. Two COD levels of basic substrate were synthesized with a mixture of phenol and 2,4-dichlorophenol. Although effluent concentration was increased with reduction of sludge retention time (SRT) from 8-days to 3-days, treatment efficiency was indicated more than 90% of COD in all SRTs applied. Reactors operated with acclimated sludge could be expected to cope with quite high loading of inhibitory substances.


2016 ◽  
Vol 19 (4) ◽  
pp. 39-49
Author(s):  
Nhat The Phan ◽  
Van Thi Thanh Truong ◽  
Son Thanh Le ◽  
Biec Nhu Ha ◽  
Dan Phuoc Nguyen

In this study, a lab-scale Partial Nitritation Sequencing Batch Reactor (PNSBR) was implemented for treating high-ammonium old landfill leachate to yield an appropriate NO2—N/ NH4+-N ratio from 1/1 to 1.32/1 mixture as a pretreatment for subsequent Anammox. The objective of this study was to determine the optimal hydraulic retention time (HRT) at different influent ammonia concentrations for 210 days. The experimental results showed that with the influent ammonia concentrations of 500, 1000, 1500 and 2000 mg/L, HRT is 12 h, 21 h, 30 h and 48 h, respectively. The range of free ammonia (FA) concentration from 17 to 44 mg/L completely inhibited nitrite oxidizing bacteria (NOB) for long time operation. The COD removal efficiency was very low (6±2) %.


2018 ◽  
Vol 85 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Peter Leonard ◽  
Emma Tarpey ◽  
William Finnegan ◽  
Xinmin Zhan

This Research Communication describes an investigation into the viability of an Intermittently Aerated Sequencing Batch Reactor (IASBR) for the treatment of dairy processing wastewater at laboratory-scale. A number of operational parameters have been varied and the effect has been monitored in order to determine optimal conditions for maximising removal efficiencies. These operational parameters include Hydraulic Retention Time (HRT), Solids Retention Time (SRT), aeration rate and cycle length. Real dairy processing wastewater and synthetic wastewater have been treated using three laboratory-scale IASBR units in a temperature controlled room. When the operational conditions were established, the units were seeded using sludge from a municipal wastewater treatment plant for the first experiment, and sludge from a dairy processing factory for the second and third experiment. In experiment three, the reactors were fed on real wastewater from the wastewater treatment plant at this dairy processing factory. These laboratory-scale systems will be used to demonstrate over time that the IASBR system is a consistent, viable option for treatment of dairy processing wastewater in this sector. In this study, the capacity of a biological system to remove both nitrogen and phosphorus within one reactor will be demonstrated. The initial operational parameters for a pilot-scale IASBR system will be derived from the results of the study.


2015 ◽  
Vol 72 (9) ◽  
pp. 1653-1661 ◽  
Author(s):  
YangWei Yan ◽  
YuWen Wang ◽  
Yan Liu ◽  
Xiang Liu ◽  
ChenChao Yao ◽  
...  

The effects of synthetic wastewater that contained 20 mg/L Cu(II) on the removal of organic pollutants in a sequencing batch reactor were investigated. Results of continuous 20 mg/L Cu(II) exposure for 120 days demonstrated that the chemical oxygen demand (COD) removal efficiency decreased to 42% initially, followed by a subsequent gradual recovery, which peaked at 78% by day 97. Effluent volatile fatty acid (VFA) concentration contributed 67 to 89% of the influent COD in the experimental reactor, which indicated that the degradation of the organic substances ceased at the VFA production step. Meanwhile, the varieties of soluble microbial products (SMP) content and main components (protein, polysaccharide, and DNA) were discussed to reveal the response of activated sludge to the toxicity of 20 mg/L Cu(II). The determination of Cu(II) concentrations in extracellular polymeric substances (EPS) and SMP throughout the experiment indicated an inverse relationship between extracellular Cu(II) concentration and COD removal efficiency.


2013 ◽  
Vol 137 ◽  
pp. 41-50 ◽  
Author(s):  
Jingwei Ma ◽  
Baisuo Zhao ◽  
Craig Frear ◽  
Quanbao Zhao ◽  
Liang Yu ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 54-65
Author(s):  
Sayed Ahmad Mirbagheri ◽  
Majid Bagheri ◽  
Majid Ehteshami ◽  
Zahra Bagheri ◽  
Masoud Pourasghar

This study examined carbon, nitrogen and phosphorous removal from municipal wastewater in a sequencing batch reactor and biokinetic coefficients were evaluated according to results of BOD and COD. Furthermore, the MLVSS in the aeration reactor was modeled by using multilayer perceptron and radial basis function artificial neural networks (MLPANN and RBFANN). The experiments were performed so that the cell retention time, filling time and intensity of aeration were (5, 10 and 15 d), (1, 2 and 3 h) and (weak, medium and strong) respectively. The result indicated that with cell retention time of 15 d, filling time of 1 h, aeration time of 6 h and settling time of 3 h the HRT is optimized at 10 h. The BOD5, COD, TP, TN and removal efficiencies were 97.13%, 94.58%, 94.27%, 89.7% and 92.75% respectively. The yield coefficient (Y), decay coefficient (Kd), maximum specific growth rate (K) and saturation constant (Ks) were 6.22 mgVSS/mgCOD, 0.002 1/d, 0.029 1/d and 20 mg COD/L according to COD experimental data. The values of the biokinetic coefficients were found to be as follows: Y = 10.45 mgVSS/mgBOD, Kd = 0.01 1/d, 0.014 1/d and 3.38 mgBOD/L according to BOD5 experimental data. The training procedures for simulation of MLVSS were highly collaborated for both RBFANN and MLPANN. The train and test models for both MLPANN and RBFANN demonstrated perfectly matched results between the experimental and the simulated values of MLVSS. The values of RMSE for train and test (verification) models obtained by MLPANN were 31.82 and 40.25 mg/L respectively, and the value of R2 was 0.99 for both models. The values of RMSE for train and test models obtained by MLPANN were 69.04 and 43.87 mg/L respectively, and the value of R2 was 0.99 for both models. It was observed that the MLPANN has stronger approximation and generalization ability than the RBFANN with regard to our experimental data for MLVSS.


2015 ◽  
Vol 9 (1) ◽  
pp. 54-65 ◽  
Author(s):  
Sayed Ahmad Mirbagheri ◽  
Majid Bagheri ◽  
Majid Ehteshami ◽  
Zahra Bagheri ◽  
Masoud Pourasghar

This study examined carbon, nitrogen and phosphorous removal from municipal wastewater in a sequencing batch reactor and biokinetic coefficients were evaluated according to results of BOD and COD. Furthermore, the MLVSS in the aeration reactor was modeled by using multilayer perceptron and radial basis function artificial neural networks (MLPANN and RBFANN). The experiments were performed so that the cell retention time, filling time and intensity of aeration were (5, 10 and 15 d), (1, 2 and 3 h) and (weak, medium and strong) respectively. The result indicated that with cell retention time of 15 d, filling time of 1 h, aeration time of 6 h and settling time of 3 h the HRT is optimized at 10 h. The BOD5, COD, TP, TN and removal efficiencies were 97.13%, 94.58%, 94.27%, 89.7% and 92.75% respectively. The yield coefficient (Y), decay coefficient (Kd), maximum specific growth rate (K) and saturation constant (Ks) were 6.22 mgVSS/mgCOD, 0.002 1/d, 0.029 1/d and 20 mg COD/L according to COD experimental data. The values of the biokinetic coefficients were found to be as follows: Y = 10.45 mgVSS/mgBOD, Kd = 0.01 1/d, 0.014 1/d and 3.38 mgBOD/L according to BOD5 experimental data. The training procedures for simulation of MLVSS were highly collaborated for both RBFANN and MLPANN. The train and test models for both MLPANN and RBFANN demonstrated perfectly matched results between the experimental and the simulated values of MLVSS. The values of RMSE for train and test (verification) models obtained by MLPANN were 31.82 and 40.25 mg/L respectively, and the value of R2 was 0.99 for both models. The values of RMSE for train and test models obtained by MLPANN were 69.04 and 43.87 mg/L respectively, and the value of R2 was 0.99 for both models. It was observed that the MLPANN has stronger approximation and generalization ability than the RBFANN with regard to our experimental data for MLVSS.


Sign in / Sign up

Export Citation Format

Share Document