Nitrite reduction and methanogenesis in a single-stage UASB reactor

2015 ◽  
Vol 72 (12) ◽  
pp. 2236-2242 ◽  
Author(s):  
L. I. Borges ◽  
C. M. López-Vazquez ◽  
H. García ◽  
J. B. van Lier

In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO2−-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO2−-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO2−-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO2− reduction to N2. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.

2013 ◽  
Vol 68 (3) ◽  
pp. 650-657 ◽  
Author(s):  
E. F. A. Mac Conell ◽  
P. G. S. Almeida ◽  
A. M. Zerbini ◽  
E. M. F. Brandt ◽  
J. C. Araújo ◽  
...  

Changes in ammonia-oxidizing bacterial (AOB) population dynamics were examined in a new sponge-based trickling filter (TF) post-upflow anaerobic sludge blanket (UASB) reactor by denaturating gradient gel electrophoresis (DGGE), and these changes were linked to relevant components influencing nitrification (chemical oxygen demand (COD), nitrogen (N)). The sponge-based packing media caused strong concentration gradients along the TF, providing an ecological selection of AOB within the system. The organic loading rate (OLR) affected the population dynamics, and under higher OLR or low ammonium-nitrogen (NH4+-N) concentrations some AOB bands disappeared, but maintaining the overall community function for NH4+-N removal. The dominant bands present in the upper portions of the TF were closely related to Nitrosomonas europaea and distantly affiliated to Nitrosomonas eutropha, and thus were adapted to higher NH4+-N and organic matter concentrations. In the lower portions of the TF, the dominant bands were related to Nitrosomonas oligotropha, commonly found in environments with low levels of NH4+-N. From a technology point of view, changes in AOB structure at OLR around 0.40–0.60 kgCOD m−3 d−1 did not affect TF performance for NH4+-N removal, but AOB diversity may have been correlated with the noticeable stability of the sponge-based TF for NH4+-N removal at low OLR. This study is relevant because molecular biology was used to observe important features of a bioreactor, considering realistic operational conditions applied to UASB/sponge-based TF systems.


2013 ◽  
Vol 67 (5) ◽  
pp. 1034-1042 ◽  
Author(s):  
P. G. S. Almeida ◽  
A. K. Marcus ◽  
B. E. Rittmann ◽  
C. A. L. Chernicharo

The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m−3 d−1, and the OLR applied to the TFs was 0.30–0.65 kgCOD m−3 d−1 (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH4+-N removal (80–95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L−1) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m−3 d−1, due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 806 ◽  
Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Hasfalina Che Man ◽  
Nik Norsyahariati Nik Daud

Cattle slaughterhouse wastewater (CSWW) with an average chemical oxygen demand (COD) and biochemical oxygen demand of 32,000 mg/L and 17,000 mg/L, respectively, can cause a severe environmental hazard if discharged untreated. Conventional upflow anaerobic sludge blanket (UASB) reactor is used in the treatment of slaughterhouse wastewater to meet the discharge standard limit of wastewater discharge set by the Department of Environment Malaysia (DOE). However, at higher loading rates the conventional systems are characterized by slow-growing microorganism resulting in long startup period, surface scum formation, and sludge washout. In this work, the performance of two laboratory scale (12 L) conventional (R1) and modified (R2) UASB reactors treating CSWW at mesophilic (36 ± 1 °C) condition were investigated. Both reactors were subjected to increasing organic loading rate (OLR) from 1.75 to 32 g L−1 day−1. The average COD, BOD5, and TSS removal efficiencies were ˃90%, at an OLR between 1.75 to 5 g L−1 day−1. The study revealed that R1 drastically reduced to 50, 53, and 43% with increasing OLR until 16 g L−1 day−1, whereas R2 maintained 76, 77, and 88% respectively, under the same OLR. Sign of reactor instability was very much pronounced in R1, showing poorly active Methanosaeta spp., whereas R2 showed a predominantly active Methanosarcina spp.


2012 ◽  
Vol 2 (2) ◽  
pp. 59-67 ◽  
Author(s):  
P. C. Vieira ◽  
M. von Sperling

We aimed to evaluate the performance and cost savings of an innovative design of a trickling filter (TF) for small population sizes, developed at the Federal University of Minas Gerais, Brazil referred to as an open trickling filter (OTF). The OTF had no side walls and no perforated bottom slab, and was applied for the post-treatment of sanitary sewage from an upflow anaerobic sludge blanket (UASB) reactor. The OTF had crushed-stone packing (3.5 m high) and was operated with an average surface hydraulic loading rate of 4.1 m3 m−2 d−1 and an average volumetric organic loading rate of 0.10 kg BOD m−3 d−1 (biochemical oxygen demand). The average concentrations obtained at the OTF effluent were 48 mg TSS L−1 (total suspended solids), 132 mg COD L−1 (chemical oxygen demand), 51 mg BOD L−1, 19 mg TKN L−1 (total Kjeldahl nitrogen), 16 mg NH4+-N L−1 and 10 mg NO3−-N L−1, complying with local discharge standards. Analysis of the construction costs indicated savings of 74% compared to conventional TF. Based on the performance, compactness, simplicity and reduced capital costs, it is believed that the proposed OTF is a good alternative for small communities, especially in developing countries.


2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


2013 ◽  
Vol 67 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Tarek Elmitwalli

Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (CODss) concentration is directly proportional to the influent CODss concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient CODss removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved CODss removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (CODt) concentration and HRT. The influent CODt concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of CODt removal, as compared with optimization of CODt conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.


2015 ◽  
Vol 72 (11) ◽  
pp. 2034-2044 ◽  
Author(s):  
Rosa Elena Yaya Beas ◽  
Katarzyna Kujawa-Roeleveld ◽  
Jules B. van Lier ◽  
Grietje Zeeman

This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m−3 d−1, 0.53 kgCOD m−3 d−1 and 0.24 kgCOD m−3 d−1 correspondingly at hydraulic loading rates of 1.92 m3 m−2 d−1, 2.97 m3 m−2 d−1 and 1.32 m3 m−2 d−1, respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops.


2018 ◽  
Vol 78 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
Gustavo Vargas-Morales ◽  
Rolando Chamy ◽  
Santiago García-Gen

Abstract A variable-gain controller for anaerobic digestion of industrial winery wastewater is presented. A control law using both volatile fatty acids (VFA) and methane production rate as controlled variables and organic loading rate (OLR) as manipulated variable is defined. The process state is quantitatively estimated by an empirical function comparing VFA measurements against a setpoint value; then, it is modified with a second empirical function that compares the methane flow rate with a maximum capacity reference, and finally it is adjusted with a third factor considering the actual hydraulic retention time. The variable-gain function determines the extent of the OLR change applied to the system. The controller was successfully validated in a 95 L upflow-anaerobic-sludge-blanket (UASB) reactor, treating industrial wine wastewater at OLR ranged between 2.0 and 39.2 g COD/L d for 120 days at mesophilic conditions. Higher performance was achieved contrasted with a conventional strategy carried out in a parallel UASB unit.


2019 ◽  
Vol 80 (8) ◽  
pp. 1505-1511 ◽  
Author(s):  
Nathalie Dyane Miranda Slompo ◽  
Larissa Quartaroli ◽  
Grietje Zeeman ◽  
Gustavo Henrique Ribeiro da Silva ◽  
Luiz Antonio Daniel

Abstract Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09–1.49 kg COD m−3 d−1), in continuous operation mode, maintaining a stable organic matter removal.


Sign in / Sign up

Export Citation Format

Share Document