scholarly journals Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 806 ◽  
Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Hasfalina Che Man ◽  
Nik Norsyahariati Nik Daud

Cattle slaughterhouse wastewater (CSWW) with an average chemical oxygen demand (COD) and biochemical oxygen demand of 32,000 mg/L and 17,000 mg/L, respectively, can cause a severe environmental hazard if discharged untreated. Conventional upflow anaerobic sludge blanket (UASB) reactor is used in the treatment of slaughterhouse wastewater to meet the discharge standard limit of wastewater discharge set by the Department of Environment Malaysia (DOE). However, at higher loading rates the conventional systems are characterized by slow-growing microorganism resulting in long startup period, surface scum formation, and sludge washout. In this work, the performance of two laboratory scale (12 L) conventional (R1) and modified (R2) UASB reactors treating CSWW at mesophilic (36 ± 1 °C) condition were investigated. Both reactors were subjected to increasing organic loading rate (OLR) from 1.75 to 32 g L−1 day−1. The average COD, BOD5, and TSS removal efficiencies were ˃90%, at an OLR between 1.75 to 5 g L−1 day−1. The study revealed that R1 drastically reduced to 50, 53, and 43% with increasing OLR until 16 g L−1 day−1, whereas R2 maintained 76, 77, and 88% respectively, under the same OLR. Sign of reactor instability was very much pronounced in R1, showing poorly active Methanosaeta spp., whereas R2 showed a predominantly active Methanosarcina spp.

2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


2019 ◽  
Vol 80 (8) ◽  
pp. 1505-1511 ◽  
Author(s):  
Nathalie Dyane Miranda Slompo ◽  
Larissa Quartaroli ◽  
Grietje Zeeman ◽  
Gustavo Henrique Ribeiro da Silva ◽  
Luiz Antonio Daniel

Abstract Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09–1.49 kg COD m−3 d−1), in continuous operation mode, maintaining a stable organic matter removal.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


2001 ◽  
Vol 28 (6) ◽  
pp. 910-921 ◽  
Author(s):  
K J Kennedy ◽  
Z Ning ◽  
L Fernandes

A dynamic model describing the simultaneous degradation of easily degradable substrates (sucrose and acetic acid (HAc)) and 2,4-dichlorophenol (2,4-DCP) in upflow anaerobic sludge blanket (UASB) reactors was developed. The two critical factors considered in the model development were sorption and substrate interaction during degradation. Data obtained from experiments on the multiple substrate degradation in continuous UASB reactors were used to validate and verify the dynamic model. The model predicts the system responses for 2,4-DCP, 4-monochlorophenol (4-MCP), HAc, propionic acid (HPr), and chemical oxygen demand (COD) concentration in the effluent. The modeling results indicated that the degradation rates for 2,4-DCP and for cosubstrates, HAc and HPr, changed inversely as a function of the specific organic loading rate for UASB reactors.Key words: dynamic, modeling, UASB, 2,4-dichlorophenol, sorption, degradation, co-metablism.


1999 ◽  
Vol 40 (8) ◽  
pp. 237-244 ◽  
Author(s):  
A. Puñal ◽  
A. Lorenzo ◽  
E. Roca ◽  
C. Hernández ◽  
J. M. Lema

The operation of an industrial pilot scale treating wastewater from a fibreboard-processing factory was monitored by an advanced system. The plant, an anaerobic hybrid UASB-UAF bioreactor (Upflow Anaerobic Sludge Blanket-Upflow Anaerobic Filter), was equipped with the following measurement devices: biogas flow-meter, feed and recycling flow-meters, thermometer Pt-100, biogas analyser (CH4 and CO), Hydrogen analyser and pH-meter. Other parameters such as alkalinity, Chemical Oxygen Demand (COD) and Volatile Fatty Acids (VFA) were determined off-line. All the on-line sensor measurements were monitored, through a PLC (Programmable Logic Controller), which indicated about the plant failures, including the measuring devices (giving messages or alarms to the operator) and provided the set points for the PLC. The pilot plant was started-up at an initial Organic Loading Rate (OLR) of 2 kg COD/m3.d (Hydraulic Retention Time (HRT) 5 days and 10 kg COD/m3), this value increasing up to 10 kg COD/m3.d by decreasing HRT to 1 day. The behaviour of the bioreactor during start-up and steady state operation was studied. After that, an experiment was performed to analyse the response of the bioreactor to an organic overload. From the results, different variables were evaluated as useful control parameters. Monitoring of CO concentration did not permit the prediction of destabilisation of the bioreactor. However, H2 concentration is quite a sensitive variable, which must be analysed together with other parameters such as methane composition or gas flow-rate. Besides, alkalinity is easy to measure and provides immediate information about the state of the plant, as was shown through the off-line measurements.


2013 ◽  
Vol 67 (5) ◽  
pp. 1034-1042 ◽  
Author(s):  
P. G. S. Almeida ◽  
A. K. Marcus ◽  
B. E. Rittmann ◽  
C. A. L. Chernicharo

The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m−3 d−1, and the OLR applied to the TFs was 0.30–0.65 kgCOD m−3 d−1 (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH4+-N removal (80–95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L−1) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m−3 d−1, due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.


2001 ◽  
Vol 44 (4) ◽  
pp. 83-88 ◽  
Author(s):  
V. Del Nery ◽  
M. H.Z. Damianovic ◽  
F. G. Barros

This work studied the performance of the dissolved air flotation (DAF) system and the start-up and the operation of two 450 m3 UASB reactors in a poultry slaughterhouse in Sorocaba, Brazil. The DAF presented reduction efficiency of grease and fats, suspended solids and COD 50% higher. The reactors were seeded with non-adapted sludge. The average COD of the reactor influent was 2,695mg/L; and the initial organic loading rate (OLR) and the initial sludge loading rate at the start-up were 0.51 kg COD/m3.day and 0.04 kg COD/kg VTS.day, respectively. The start-up period was 144 days. During this time the reactor flow rate and OLR were gradually increased. At the reactor start-up, the maximum OLR value was 2.1 kg COD/m3.day, the COD reduction was higher than 80%, and the concentration of volatile fatsty acids (VFA) was below 100mg/L. The COD reductions, considering the reactor effluent raw COD and soluble COD were similar throughout the period studied in both reactors. The reactor effluent raw COD was approximately 10% higher than the soluble COD until the 225th day of operation. From the 225th day of operation this value increased 20%-30% due to the sludge washout. The effluent soluble COD reduction, the effluent VFA concentration and the operational stability attested the good performance of UASB reactors in poultry slaughterhouse wastewater treatment.


2013 ◽  
Vol 33 (2) ◽  
pp. 367-378 ◽  
Author(s):  
Estevão Urbinati ◽  
Rose M. Duda ◽  
Roberto A. de Oliveira

In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.


2011 ◽  
Vol 64 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Tarek Elmitwalli ◽  
Ralf Otterpohl

The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14–25 °C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 °C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from ‘Flintenbreite’ settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 °C, total chemical oxygen demand (CODt) removal of 52–64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31–41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22–36 and 10–24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31–64%) than the septic tank (11–14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20–30 °C, while a HRT of 12–24 h can be applied at temperature lower than 20 °C.


Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Mohd Razif Harun ◽  
Tuan Farhana Tuan Mohd Marzuki ◽  
Abdul Malek Abdul Wahab

Cattle slaughterhouses generate wastewater that is rich in organic contaminant and nutrients, which is considered as high strength wastewater with a high potential for energy recovery. Work was undertaken to evaluate the efficiency of the 12 L laboratory scale conventional and a modified upflow anaerobic sludge blanket (UASB) reactors (conventional, R1 and modified, R2), for treatment of cattle slaughterhouse wastewater (CSWW) under mesophilic condition (35 ± 1 °C). Both reactors were acclimated with synthetic wastewater for 30 days, then continuous study with real CSWW proceeds. The reactors were subjected to the same loading condition of OLR, starting from 1.75, 3, 5 10, 14, and 16 g L−1d−1, corresponding to 3.5, 6, 10, 20, 28, and 32 g COD/L at constant hydraulic retention time (HRT) of 24 h. The performance of the R1 reactor drastically dropped at OLR 10 g L−1d−1, and this significantly affected the subsequent stages. The steady-state performance of the R2 reactor under the same loading condition as the R1 reactor revealed a high COD removal efficiency of 94% and biogas and methane productions were 27 L/d and 89%. The SMP was 0.21 LCH4/gCOD added, whereas the NH3-N alkalinity ratio stood at 651 mg/L and 0.2. SEM showed that the R2 reactor was dominated by Methanosarcina bacterial species, while the R1 reactor revealed a disturb sludge with insufficient microbial biomass.


Sign in / Sign up

Export Citation Format

Share Document