Research on the synthesis and scale inhibition performance of a new terpolymer scale inhibitor

2015 ◽  
Vol 73 (7) ◽  
pp. 1619-1627 ◽  
Author(s):  
Yufei Bao ◽  
Meng Li ◽  
Yanqing Zhang

A new terpolymer named β-CD-MA-SSS was produced using free-radical polymerization of β-cyclodextrin (β-CD), maleic-anhydride (MA) and sodium-styrene-sulfonate (SSS) as monomers, with potassium persulfate (KPS) as initiator. Its performance as a scale inhibitor to prevent deposition of calcium carbonate (CaCO3) has been investigated. Experimental results demonstrated that β-CD-MA-SSS performed excellent scale inhibition and exhibited a high conversion rate under the following conditions: initiator consisting of 6%, molar ratio of reaction monomers SSS:MA = 0.8:1, MA:β-CD = 6:1, reaction temperature of 80 °C, reaction time of 6 h, and dropping time of 40 min when MA was dosed as a substrate, and SSS and KPS were dosed as dropping reactants simultaneously. Use of a Fourier transform infrared spectrometer for this inhibitor showed that the polymerization reaction had taken place with the reaction monomers under the above specified conditions. Scanning electron microscopy indicated that the β-CD-MA-SSS had a strong chelating ability for calcium (Ca2+) and a good dispersion ability for calcium carbonate (CaCO3).

2019 ◽  
Vol 814 ◽  
pp. 493-498
Author(s):  
Ren Jun Xu ◽  
Hua Lei He ◽  
Jing Wang ◽  
Hai Peng Hui ◽  
Qiao Na Liu

Compared with inorganic phosphonates, organic phosphonates have better chemical stability in water treatment, and are not easy to hydrolyze in higher temperature and wider pH range. In this paper, a one-step synthesis method of ethylene diamine tetra (methylene phosphonic acid) sodium (EDTMPS) and methylene phosphonic acid (DTPMPA) were studied. A new phosphate scale inhibitor was prepared and its scale inhibition performance was evaluated. The results showed that the scale inhibition rate increased with the increase of the concentration of synthetic products (EDTMPS, DTPMPA). At the same concentration, compared with DTPMPA, EDTMPS has better scale inhibition performance, and the maximum scale inhibition rate can reach 96.85%. The scale inhibition performance of composite scale inhibitor is better than that of single scale inhibitor, and the scale inhibition rate of the synthesized products can reach more than 90% after compounding. And inhibitory mechanism has been proposed: Because phosphonates effectively control the rate of nucleation. In addition, polyphosphonates can chelate Ca2+, Mg2+ plasma to form monocyclic or bicyclic chelates. This will destroy the normal growth process of calcium carbonate and other crystals, thus preventing the formation of calcium carbonate scale.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yamin Cheng ◽  
Xinyu Guo ◽  
Xiaowei Zhao ◽  
Yufeng Wu ◽  
Zhongyan Cao ◽  
...  

AbstractGiven the special performance of nanosilica with its small size, large specific surface area and high surface activity, nanosilica containing reactive amino group (denoted as SiO2–NH2) and polysuccinimide were allowed to take part in polymerization reaction to afford SiO2–NH2 modified polyaspartic acid (denoted as SiO2–NH2/PASP), a potential polymer scale inhibitor with good water solubility for industrial circulating water. The scale inhibition performance of the as-prepared SiO2–NH2/PASP was evaluated by static scale inhibition test; and its scale inhibition mechanism was explored by means of scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Results indicated that SiO2–NH2/PASP exhibits excellent scale inhibition performance against CaSO4 and CaCO3 at very low concentrations (optimum scale inhibition rate of 100% and 68%, respectively), and the presence of 5 mg/L of SiO2–NH2/PASP greatly increases the inhibition efficiency of CaSO4 and CaCO3 scale by 21% and 53%, obviously higher than that of pure PASP.


2015 ◽  
Vol 814 ◽  
pp. 278-285
Author(s):  
Ming Zhu ◽  
Cheng Qiang Ren ◽  
Yuan Yuan Meng ◽  
Li Liu ◽  
Yun Ping Zheng

The deposition of BaSO4scale is always found in the oilfield. It is difficult to be removed. Therefore, it plays a negative role to the production. The effects of temperature and water chemistry on BaSO4scale have been investigated by using the conductivity method in this work. An environment-friendly copolymer was prepared to control the scaling of BaSO4. The copolymer was proved by static scale inhibition method, and weight-loss test that it has excellent scale inhibition performance and corrosion inhibition efficiency. Furthermore, FTIR spectra was used to prove that the scale inhibitor was polyepoxysuccinic acid (PESA).


2008 ◽  
Vol 51 (7) ◽  
pp. 695-699 ◽  
Author(s):  
ZhenHua Quan ◽  
YongChang Chen ◽  
XiuRong Wang ◽  
Cheng Shi ◽  
YunJie Liu ◽  
...  

2012 ◽  
Vol 164 ◽  
pp. 194-198 ◽  
Author(s):  
Zhan Liu ◽  
Xin Wang ◽  
Zhen Fa Liu

A copolymer was prepared from epoxy succinic acid (ESA) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS). The structure of the ESA/AMPS copolymer was characterized by means of FTIR. The performances of scale inhibition, dispersion and biodegradability of the ESA/AMPS copolymer were studied. The results showed that the scale inhibition performance of the ESA/AMPS copolymer on calcium phosphate and dispersing performance on ferric oxide were much better than PESA. The scale inhibition rate on calcium carbonate was 85% when the ESA/AMPS copolymer was 8mg/L. The scale inhibition rate on calcium phosphate was 65% when the ESA/AMPS copolymer was 30mg/L. The ESA/AMPS copolymer had good biodegradation performance and biodegradation rate could reach 65% after 28 days.


2012 ◽  
Vol 610-613 ◽  
pp. 1513-1517
Author(s):  
Gang Lu ◽  
Yue Huang

Intermediate vector polysuccinimide (PSI) was prepared by polymerization of malefic acid and ammonia at 180°Cin this article. Hydrophilic polyaspartic acid (PASP) derivative was prepared from amino-sulfonic and PSI; Lipophilic PASP derivative was prepared from PSI and diisopropylamine. Their scale inhibition rates of calcium carbonate were evaluated by static scale experiments. The inhibition rate of calcium carbonate was 90.2% when n(amino-sulfonic): n(PSI) =1:14 and the dosage of pharmaceutical was 12mg / L. The inhibition rate of calcium carbonate was 87.6% when n(diisopropylamine):n(PSI)=1:8 and the dosage of pharmaceutical was 15mg /L. The calcium carbonate that collected from static state experiments was analysised by scanning electron microscope (SEM). The results showed that polyaspartic acid derivatives were synthesized which had the best overall performance when n (amino-sulfonic): n (PSI) = 1:14.


2007 ◽  
Vol 50 (1) ◽  
pp. 114-120 ◽  
Author(s):  
GuiCai Zhang ◽  
JiJiang Ge ◽  
MingQin Sun ◽  
BinLin Pan ◽  
Tao Mao ◽  
...  

Desalination ◽  
2017 ◽  
Vol 422 ◽  
pp. 165-173 ◽  
Author(s):  
Yan Ji ◽  
Yun Chen ◽  
Jinxun Le ◽  
Mengqi Qian ◽  
Ying Huan ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 1097-1101
Author(s):  
Qiang Ke ◽  
Fa Shu Liang

In response to the serious barium / strontium – scale in oilfields, we simulated oilfield conditions and investigated the scale inhibition performance of several common scale inhibitors to barium and strontium, by following the protocol from Evaluation Methods of Anti-Scale Agent for Oilfield Use, Petroleum Gas Standards of People’s Republic of China SY/T 5673. The most effective scale inhibitor CD-1 was screened out. With CD-1 as barium / strontium scale inhibitor in the static anti-scale analytical experiments, the dependence of scale inhibition performance on scale inhibitor concentration, saltiness, temperature, time and the system pH was investigated. The application conditions of barium / strontium scale inhibitor in real petroleum and gas field was obtained. Under the optimized application conditions, the mixture scale inhibitor had better scale inhibition efficiency than CD-1 alone.


Sign in / Sign up

Export Citation Format

Share Document