Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants

2016 ◽  
Vol 73 (8) ◽  
pp. 1927-1936 ◽  
Author(s):  
Roshan K. Nainani ◽  
Pragati Thakur

Current research reports the synthesis of reduced graphene oxide (RGO)-TiO2 nanocomposite by in-situ redox method and graphene oxide by modified hummers method. The ratio of RGO and TiO2 in the composite was optimized to show best photocatalytic activity for the degradation of targeted pollutants. Optimized (1:10) RGO-TiO2 nanocomposite was characterized by various techniques viz. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller surface area (BET), Raman and diffuse reflectance spectroscopy (DRS) technique confirming successful formation of nanocomposite. XRD results confirm the presence of anatase phase in RGO-TiO2. Uniform dispersion of TiO2 nanoparticles on RGO could be seen from TEM images. The obtained results of (1:10) RGO-TiO2 showed five-fold and two-fold enhancement for the visible light and UV light, respectively, for the photocatalytic mineralization of methylene blue dye as compared to commercial Aeroxide P25 TiO2. The excellent photocatalytic mineralization activity of (1:10) RGO-TiO2 could be attributed to the enhanced surface area of composite as well as to its good electron sink capability. (1:10) RGO-TiO2 could be recycled easily and was found to be equally efficient even after the fourth cycle for the photocatalytic mineralization of methylene blue dye. The non-selectivity of synthesized composite was checked by the mineralization studies of oxalic acid.

2019 ◽  
Vol 487 ◽  
pp. 539-549 ◽  
Author(s):  
Mohamed Mokhtar Mohamed ◽  
Mohamed A. Ghanem ◽  
Mohamed Khairy ◽  
Eman Naguib ◽  
Nouf H. Alotaibi

2012 ◽  
Vol 584 ◽  
pp. 396-400 ◽  
Author(s):  
Aravind Naga Revuru ◽  
Nagarajan Padmavathy ◽  
Angappan Sheela ◽  
Swamiappan Sasikumar

The major cause of surface and ground water contamination is due to effluent from dyeing industries. The discharged effluent chemicals inhibit light penetration into water bodies and some are considered to be carcinogenic. In this study, the photocatalytic decomposition of the synthetic dye, methylene blue was investigated in the presence of activated TiO2. The TiO2 sample was characterized by using XRD to analyze the presence of anatase and rutile phases. The dye degradation was monitored as a change in absorbance by UV-Visible spectrophotometer. The contributing factors towards dye degradation include both the dye concentration as well as the quantity of TiO2 used. Different quantities of TiO2 in anatase phase was taken and activated under UV radiation for 15 min. and subsequently coated on to TLC plates using 5% polyvinyl alcohol as a binding agent. This photocatalytic plate was kept in the methylene blue dye solution and exposed to sunlight. The results shows that 57% of the 30ppm methylene blue dye gets degraded within 75min., when exposed to UV activated TiO2 in presence of natural sunlight.


2020 ◽  
Vol 309 ◽  
pp. 113171 ◽  
Author(s):  
Mehmet Harbi Calimli ◽  
Mehmet Salih Nas ◽  
Hakan Burhan ◽  
Sibel Demiroglu Mustafov ◽  
Özkan Demirbas ◽  
...  

2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


2019 ◽  
Vol 04 ◽  
Author(s):  
Sachin Dev ◽  
Man Singh

Introduction: The Metal Sulfide Nanoparticles Doped Graphene Oxide Sheets Have Been Studied And Were Used To Adsorb Fluorescent Methylene Blue Dye. Such Mechanism Efficiently Reduces The Dyes And Their Fluorescent Pollutants Through The Positive And Negative Holes. The Metal Sulfide Doped Graphene Oxide Could Be A Most Potential Route To Reduce From Fluorescent To Non-Fluorescent Species To Prevent The Global Warming And Other Pollution Being Caused By Them. Objectives: This Study Has Been To Strengthen And Widen The Applications Of Negative And Positive Holes Quick Formation At A Negligible Energy Barrier. Metal Sulfide Nanoparticles Were Doped With Graphene Oxide To Further Strengthen The Semiconducting And To Fastened The Rate Of Adsorption Of Methylene Blue Dye. Methods: Graphite Flakes Were Oxidized To Graphite Oxide With High Yield. The Graphite Oxide Was Sonicated In Water To Obtain Graphene Oxide And Doped With Metal Sulfide Nanoparticles In Situ. The Samples Were Characterized With High End Instruments And Used For Adsorption. Results: The Metal Sulfide Nanoparticles Were Successfully Doped With Graphene Oxide. The Ftir And Xps Spectra Infer Doping Of Metal Sulfide Nanoparticle In Graphene Oxide. That Enhanced Methylene Blue Adsorption Upto 97%. Conclusion: The Common Adsorption Effect Of Methylene Blue With Bare Graphene Oxide And Metal Sulfide Nanoparticles Doped Graphene Oxide Were Studied In This Paper. The Methylene Blue Adsorption Was Maximum (97%) By Cadmium Sulfide Doped Graphene Oxide Compared To Bare Graphene Oxide (87%), Nickel Sulfide Doped Graphene Oxide (79%), And Zinc Sulfide Doped Graphene Oxide (89%). The Metal Sulfide Nanoparticles Have Successfully Enhanced A Semiconductor Mechanism Of Graphene Oxide Especially With 3d And 4d10 Of Cds.


RSC Advances ◽  
2020 ◽  
Vol 10 (62) ◽  
pp. 37905-37915 ◽  
Author(s):  
Valerie Ling Er Siong ◽  
Xin Hong Tai ◽  
Kian Mun Lee ◽  
Joon Ching Juan ◽  
Chin Wei Lai

Photoactivity of graphene oxide (GO) was enhanced after reduction, this is due to improved photoelectrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document