scholarly journals Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff

2017 ◽  
Vol 75 (9) ◽  
pp. 2072-2082 ◽  
Author(s):  
Amin Toranjian ◽  
Safar Marofi

Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014–May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov–Smirnov and Anderson–Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.


1982 ◽  
Vol 19 (A) ◽  
pp. 359-365 ◽  
Author(s):  
David Pollard

The theory of weak convergence has developed into an extensive and useful, but technical, subject. One of its most important applications is in the study of empirical distribution functions: the explication of the asymptotic behavior of the Kolmogorov goodness-of-fit statistic is one of its greatest successes. In this article a simple method for understanding this aspect of the subject is sketched. The starting point is Doob's heuristic approach to the Kolmogorov-Smirnov theorems, and the rigorous justification of that approach offered by Donsker. The ideas can be carried over to other applications of weak convergence theory.



2003 ◽  
Vol 33 (2) ◽  
pp. 365-381 ◽  
Author(s):  
Vytaras Brazauskas ◽  
Robert Serfling

Several recent papers treated robust and efficient estimation of tail index parameters for (equivalent) Pareto and truncated exponential models, for large and small samples. New robust estimators of “generalized median” (GM) and “trimmed mean” (T) type were introduced and shown to provide more favorable trade-offs between efficiency and robustness than several well-established estimators, including those corresponding to methods of maximum likelihood, quantiles, and percentile matching. Here we investigate performance of the above mentioned estimators on real data and establish — via the use of goodness-of-fit measures — that favorable theoretical properties of the GM and T type estimators translate into an excellent practical performance. Further, we arrive at guidelines for Pareto model diagnostics, testing, and selection of particular robust estimators in practice. Model fits provided by the estimators are ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics.



Author(s):  
Marcel Berlinger ◽  
Stefan Kolling ◽  
Jens Schneider

AbstractAcrylic glasses, as well as mineral glasses, exhibit a high variability in tensile strength. To cope with this uncertainty factor for the dimensioning of structural parts, modeling of the stress-strain behavior and a proper characterization of the varying fracture stress or strain are required. For the latter, this work presents an experimental and mathematical methodology. Fracture strains from 50 quasi-static tensile tests, locally analyzed using digital image correlation, form the sample. For the assignment of an occurrence probability to each experiment, an evaluation of existing probability estimators is conducted, concerning their ability to fit selected probability distribution functions. Important goodness-of-fit tests are introduced and assessed critically. Based on the popular Anderson-Darling test, a generalized form is proposed that allows a free, hitherto not possible, choice of the probability estimator. To approach the fracture strains population, the combination of probability estimator and distribution function that best reproduces the experimental data is determined, and its characteristic progression is discussed with the aid of fractographic analyses.



2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 69-81
Author(s):  
Hanaa Abu-Zinadah ◽  
Asmaa Binkhamis

This article studied the goodness-of-fit tests for the beta Gompertz distribution with four parameters based on a complete sample. The parameters were estimated by the maximum likelihood method. Critical values were found by Monte Carlo simulation for the modified Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, and Lilliefors test statistics. The power of these test statistics founded the optimal alternative distribution. Real data applications were used as examples for the goodness of fit tests.



2019 ◽  
Vol 1 (2) ◽  
pp. 43-49 ◽  
Author(s):  
Elly Rosmaini

In this paper we chose three stations in Medan City , Indonesia to estimate Monthly Rainfall Data i.e. Tuntungan, Tanjung Selamat, and Medan Selayang Stations. We took the data from 2007 to 2016. In this case fitted with Normal, Gamma, and Lognormal Distributions. To estimate parameters, we used this method. Furthermore, Kolmogorov-Smirnov and Anderson Darling tests were used the goodness-of-fit test. The Gamma and Normal Distributions is suitable for Tuntungan and Medan Selayang Stations were stated by Kolmogorov-Smirnov's test. Anderson Darling's test stated that Gamma Distribution was suitable for all stations.



2013 ◽  
Vol 17 (11) ◽  
pp. 4541-4553 ◽  
Author(s):  
S. H. P. W. Gamage ◽  
G. A. Hewa ◽  
S. Beecham

Abstract. Accurate estimation of hydrological losses is required for making vital decisions in design applications that are based on design rainfall models and rainfall–runoff models. The use of representative single values of hydrological losses, despite their wide variability, is common practice, especially in Australian studies. This practice leads to issues such as over or under estimation of design floods. The probability distribution method is potentially a better technique to describe losses. However, a lack of understanding of how losses are distributed can limit the use of this technique. This paper aims to identify a probability distribution function that can successfully describe hydrological losses of a catchment of interest. The paper explains the systematic process of identifying probability distribution functions, the problems faced during the distribution fitting process and a new generalised method to test the adequacy of fitted distributions. The goodness-of-fit of the fitted distributions are examined using the Anderson–Darling test and the Q–Q plot method and the errors associated with quantile estimation are quantified by estimating the bias and mean square error (MSE). A two-parameter gamma distribution was identified as one that successfully describes initial loss (IL) data for the selected catchments. Further, non-parametric standardised distributions that describe both IL and continuing loss data are also identified. This paper will provide a significant contribution to the Australian Rainfall and Runoff (ARR) guidelines that are currently being updated, by improving understanding of hydrological losses in South Australian catchments. More importantly, this study provides new knowledge on how IL in a catchment is characterised.



2017 ◽  
Vol 28 (2) ◽  
pp. 30-42 ◽  
Author(s):  
Lorentz Jäntschi ◽  
Sorana D. Bolboacă

AbstractStatistical analysis starts with the assessment of the distribution of experimental data. Different statistics are used to test the null hypothesis (H0) stated as Data follow a certain/specified distribution. In this paper, a new test based on Shannon’s entropy (called Shannon’s entropy statistic, H1) is introduced as goodness-of-fit test. The performance of the Shannon’s entropy statistic was tested on simulated and/or experimental data with uniform and respectively four continuous distributions (as error function, generalized extreme value, lognormal, and normal). The experimental data used in the assessment were properties or activities of active chemical compounds. Five known goodness-of-fit tests namely Anderson-Darling, Kolmogorov-Smirnov, Cramér-von Mises, Kuiper V, and Watson U2 were used to accompany and assess the performances of H1.



2003 ◽  
Vol 33 (02) ◽  
pp. 365-381 ◽  
Author(s):  
Vytaras Brazauskas ◽  
Robert Serfling

Several recent papers treated robust and efficient estimation of tail index parameters for (equivalent) Pareto and truncated exponential models, for large and small samples. New robust estimators of “generalized median” (GM) and “trimmed mean” (T) type were introduced and shown to provide more favorable trade-offs between efficiency and robustness than several well-established estimators, including those corresponding to methods of maximum likelihood, quantiles, and percentile matching. Here we investigate performance of the above mentioned estimators on real data and establish — via the use of goodness-of-fit measures — that favorable theoretical properties of the GM and T type estimators translate into an excellent practical performance. Further, we arrive at guidelines for Pareto model diagnostics, testing, and selection of particular robust estimators in practice. Model fits provided by the estimators are ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics.



1982 ◽  
Vol 19 (A) ◽  
pp. 359-365
Author(s):  
David Pollard

The theory of weak convergence has developed into an extensive and useful, but technical, subject. One of its most important applications is in the study of empirical distribution functions: the explication of the asymptotic behavior of the Kolmogorov goodness-of-fit statistic is one of its greatest successes. In this article a simple method for understanding this aspect of the subject is sketched. The starting point is Doob's heuristic approach to the Kolmogorov-Smirnov theorems, and the rigorous justification of that approach offered by Donsker. The ideas can be carried over to other applications of weak convergence theory.



Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 453 ◽  
Author(s):  
Fernando López-Rodríguez ◽  
Justo García-Sanz-Calcedo ◽  
Francisco Moral-García ◽  
Antonio García-Conde

It is of vital importance in statistical distributions to fit rainfall data to determine the maximum amount of rainfall expected for a specific hydraulic work. Otherwise, the hydraulic capacity study could be erroneous, with the tragic consequences that this would entail. This study aims to present the Dagum distribution as a new statistical tool to calculate rainfall in front of frequent statistical distributions such as Gumbel, Log-Pearson Type III, Gen Extreme Value (GEV) and SQRT-ET max. The study was performed by collecting annual rainfall data from 52 meteorological stations in the province of Badajoz (Spain), using the statistical goodness-of-fit tests of Anderson–Darling and Kolmogorov–Smirnov to establish the degree of fitness of the Dagum distribution, applied to the maximum annual rainfall series. The results show that this distribution obtained a flow 21.92% greater than that with the traditional distributions. Therefore, in the Southwest of Spain, the Dagum distribution fits better to the observed rainfall data than other common statistical distributions, with respect to precision and calculus of hydraulics works and river flood plains.



Sign in / Sign up

Export Citation Format

Share Document