scholarly journals Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents

2017 ◽  
Vol 76 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Abril Gómez-Guzmán ◽  
Sergio Jiménez-Magaña ◽  
A. Suggey Guerra-Rentería ◽  
César Gómez-Hermosillo ◽  
F. Javier Parra-Rodríguez ◽  
...  

In this research removal of NH3-N, NO3-N and PO4-P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO3-N, 80.62% of NH3-N and 4.30% of PO4-P. With Bacillus cereus the results were 8.40% of NO3-N, 28.80% of NH3-N and 3.80% of PO4-P. The removals with Pseudomonas putida were 2.50% of NO3-N, 41.80 of NH3-N and 4.30% of PO4-P. The consortium of Chlorella vulgaris–Bacillus cereus–Pseudomonas putida removed 29.40% of NO3-N, 4.2% of NH3-N and 8.4% of PO4-P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1654 ◽  
Author(s):  
Marcin Dębowski ◽  
Paulina Rusanowska ◽  
Marcin Zieliński ◽  
Magda Dudek ◽  
Zdzisława Romanowska-Duda

2021 ◽  
Author(s):  
Jing Tuo ◽  
Shiwei Cao ◽  
Muzi Li ◽  
Rong Guo

Abstract The problem of poor carbon source is a common factor limiting the nutrients removal in bioretention cells (BRCs). This study aimed to investigate the feasibility of using modified biomass in BRCs filled with a mixture of fly ash ceramsite and pumice fillers to enhance nitrogen removal. Different pretreatment methods (hydrothermal-treated, acid-treated and alkali-treated) were attempted, and hydrothermal pretreatment showed a best performance in carbon release ability. The scanning electron microscopy showed that the lignin in hydrothermal pretreated pine barks (H-PBs) was destroyed, and the fiber structure became thinner with more irregular folds, which improved the accessibility of cellulose and attachment of microorganisms. The addition of H-PBs significantly enhanced the nutrients removal in BRCs, and the removal rates of TN and NO3−-N increased by 23.25% and 38.22% compared with those in BRC-A (without external carbon source), but the removal rate of NH4+-N was inferior to BRC-A. Besides, the large carbon release amount of H-PBs did not deteriorate the effluent quality, with COD removal rate of 87.98% in the 48 d. These results indicate that the BRCs by adding H-PBs could intensify the denitrification process.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 257-264 ◽  
Author(s):  
S.R. Chae ◽  
S.H. Lee ◽  
J.O. Kim ◽  
B.C. Paik ◽  
Y.C. Song ◽  
...  

As the sewerage system is incomplete, sewage in Korea lacks easily biodegradable organics for nutrient removal. In this country, about 11,400 tons of food waste of high organic materials is produced daily. Therefore, the potential of food waste as an external carbon source was examined in a pilot-scale BNR (biological nutrient removal) process for a half year. It was found that as the supply of the external carbon increased, the average removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) increased from 53% and 55% to 97% and 93%, respectively. VFAs (volatile fatty acids) concentration of the external carbon source strongly affected denitrification efficiency and EBPR (enhanced biological phosphorus removal) activity. Biological phosphorus removal was increased to 93% when T-N removal efficiency increased from 78% to 97%. In this study, several kinds of PHAs (poly-hydroxyalkanoates) in cells were observed. The observed PHAs was composed of 37% 3HB (poly-3- hydroxybutyrate), 47% 3HV (poly-3-hydroxyvalerate), 9% 3HH (poly-3-hydroxyhexanoate), 5% 3HO (poly-3-hydroxyoctanoate), and 2% 3HD (poly-3-hydroxydecanoate).


Sign in / Sign up

Export Citation Format

Share Document