Expiration of the bubble liquid through the nozzle, accompanied by high pressures and temperatures in the gas phase

2007 ◽  
Vol 5 ◽  
pp. 267-272
Author(s):  
S.A. Lepikhin ◽  
M.N. Galimzyanov

In a quasi-one-dimensional formulation, the problem of the stationary flow of a bubble liquid in a nozzle of circular cross-section is considered. The influence of interphase mass exchange processes on the nature of nonlinear oscillations of bubbles and the high pressures and temperatures that arise in them developing in the expanding part of the nozzle near the minimum cross section is investigated.

2006 ◽  
Vol 4 ◽  
pp. 83-89
Author(s):  
S.A. Lepikhin ◽  
M.N. Galimzyanov

The stationary flow of a bubble gas-liquid mixture in a nozzle of circular cross-section is considered. The possibility of realizing superhigh temperatures and pressures in the gas phase at the nozzle site near the minimum cross section is analyzed. The effect of the parameters (the initial radius and the volume content of bubbles that determine the composition of the volume flow of liquid fed into the nozzle) on the flow pattern is studied.


1960 ◽  
Vol 27 (1) ◽  
pp. 145-151 ◽  
Author(s):  
R. D. Mindlin ◽  
H. D. McNiven

A system of approximate, one-dimensional equations is derived for axially symmetric motions of an elastic rod of circular cross section. The equations take into account the coupling between longitudinal, axial shear, and radial modes. The spectrum of frequencies for real, imaginary, and complex wave numbers in an infinite rod is explored in detail and compared with the analogous solution of the three-dimensional equations.


1984 ◽  
Vol 140 ◽  
pp. 91-111 ◽  
Author(s):  
V. M. Entov ◽  
A. L. Yarin

The dynamics of propagation and disintegration of laminar liquid jets moving in air has been investigated theoretically. It is assumed that the jet is thin, i.e. the ratio of the characteristic transverse size to the longitudinal one is small. It is assumed also that the lateral surface of the jet is free of shearing forces and is ‘almost free’ of normal ones in the sense that the normal tractions other than isotropic pressure are small in comparison with the internal stresses acting in the jet cross-section.Asymptotic quasi-one-dimensional equations of the continuity, momentum and moment of momentum of liquid motion in the jet have been derived. These equations were used as a basis for studying the process of growth of long-wave bending (transverse) disturbances of high-velocity jets of circular cross-section during their motion through air. The instability condition has been obtained and the growth rate of small bending disturbances of the jet has been found; the evolution of the jet shape at the stage of finite disturbances is investigated.


Author(s):  
Sinan Filiz ◽  
O. Burak Ozdoganlar

Part I of this work presents a combined one-dimensional/three-dimensional approach for obtaining a unified model for the dynamics of micro- and macro-drills. To increase the numerical efficiency of the model, portions of the drill with circular cross-section (shank, extension, and tapered sections) are modeled using one-dimensional beam models without compromising model accuracy. A three-dimensional model is used for an accurate representation of the fluted section, considering the actual geometry with the pretwisted shape and axially varying (nonaxisymmetric) cross-section. The actual cross-section of the drills is incorporated to the model through a polynomial mapping while the pretwist effect is captured by defining a rotating reference frame. The boundary-value problem for both one- and three-dimensional models are derived using a variational approach, based on the extended Hamilton’s principle, and are subsequently solved by applying the spectral-Tchebychev technique. A component-mode synthesis is used for connecting the individual sections to obtain the dynamic model for the entire drill. Convergence of the model is studied by varying the number of polynomials for each section. The experimental validation of the model is included in Part II for both macro- and micro-drills. Also included in Part II is an analysis of drill dynamics for varying drill-geometry parameters and axial (thrust) force.


2003 ◽  
Vol 125 (3) ◽  
pp. 529-537 ◽  
Author(s):  
J. Lo´pez ◽  
F. Faura ◽  
J. Herna´ndez ◽  
P. Go´mez

During the initial slow stage of the injection process in high-pressure die casting machines with horizontal cold chamber, a plunger pushes the molten metal which partially fills the injection chamber, causing the formation of a gravity wave. The evolution of the wave surface profile, which depends on the plunger acceleration law, may trap air in the molten metal, causing porosity when the metal solidifies. In this work, a one-dimensional shallow-water model, which is solved numerically using the method of characteristics, and a three-dimensional numerical model, based on a finite element formulation and the volume of fluid (VOF) method for treating the free surface, are used to analyze the flow of molten metal in an injection chamber of circular cross section. The results for the evolution of the free surface obtained from both models for different plunger motion laws and initial filling fractions of the injection chamber were in good agreement for broad ranges of operating conditions. The existence of a critical plunger speed, above which the reflection of the wave of molten metal against the chamber ceiling might appreciably increase air entrapment effects, is investigated. The results for the wave profiles in chambers of circular cross section are compared with those obtained in an equivalent two-dimensional configuration of the injection chamber, for which the shallow-water model is solved analytically. It is shown how the results obtained by applying the one-dimensional model to a two-dimensional chamber configuration can be used to reproduce, with an acceptable degree of accuracy, the salient characteristics of the flow of molten metal in a real injection chamber of circular cross section.


1971 ◽  
Vol 46 (1) ◽  
pp. 111-128 ◽  
Author(s):  
Naruyoshi Asano

Sound waves of finite but small amplitude propagating into a quasi-steady, supersonic flow in a non-uniform duct are analyzed by means of a perturbation method. General properties of the flow and of the wave propagation are studied using a one-dimensional approximation. A shock propagation law in the unsteady flow is obtained. As an example, the formation and development of shock waves are discussed for a duct with a conical convergence. Comparisons of the theory with an experiment are also made; fairly good agreement is found.


Author(s):  
Manuel Pineda-Sanchez ◽  
Angel Sapena-Baño ◽  
Juan Perez-Cruz ◽  
Javier Martinez-Roman ◽  
Ruben Puche-Panadero ◽  
...  

Purpose Rectangular conductors play an important role in planar transmission line structures, multiconductor transmission lines, in power transmission and distribution systems, LCL filters, transformers, industrial busbars, MEMs devices, among many others. The precise determination of the inductance of such conductors is necessary for their design and optimization, but no explicit solution for the AC resistance and internal inductances per-unit length of a linear conductor with a rectangular cross-section has been found, so numerical methods must be used. The purpose of this paper is to introduce the use of a novel numerical technique, the proper generalized decomposition (PGD), for the calculation of DC and AC internal inductances of rectangular conductors. Design/methodology/approach The PGD approach is used to obtain numerically the internal inductance of a conductor with circular cross-section and with rectangular cross-section, both under DC and AC conditions, using a separated representation of the magnetic vector potential in a 2D domain. The results are compared with the analytical and approximate expressions available in the technical literature, with an excellent concordance. Findings The PGD uses simple one-dimensional meshes, one per dimension, so the use of computational resources is very low, and the simulation speed is very high. Besides, the application of the PGD to conductors with rectangular cross-section is particularly advantageous, because rectangular shapes can be represented with a very few number of independent terms, which makes the code very simple and compact. Finally, a key advantage of the PGD is that some parameters of the numerical model can be considered as additional dimensions. In this paper, the frequency has been considered as an additional dimension, and the internal inductance of a rectangular conductor has been computed for the whole range of frequencies desired using a single numerical simulation. Research limitations/implications The proposed approach may be applied to the optimization of electrical conductors used in power systems, to solve EMC problems, to the evaluation of partial inductances of wires, etc. Nevertheless, it cannot be applied, as presented in this work, to 3D complex shapes, as, for example, an arrangement of layers of helically stranded wires. Originality/value The PGD is a promising new numerical procedure that has been applied successfully in different fields. In this paper, this novel technique is applied to find the DC and AC internal inductance of a conductor with rectangular cross-section, using very dense and large one-dimensional meshes. The proposed method requires very limited memory resources, is very fast, can be programmed using a very simple code, and gives the value of the AC inductance for a complete range of frequencies in a single simulation. The proposed approach can be extended to arbitrary conductor shapes and complex multiconductor lines to further exploit the advantages of the PGD.


2014 ◽  
Vol 1020 ◽  
pp. 356-360
Author(s):  
A.A. Sarukhanyan ◽  
Angin V. Martirosyan

Often due to the pressure gradient change in pressure systems the stationary flow pattern is disturbed initiating respective time-dependent change of hydraumechanical parameters at the cross-section. As a consequence of the pressure gradient change under the influence of varying friction and inertia forces unstable flow of fluid occurs. The study of this phenomenon presents important practical and theoretical interest.


Sign in / Sign up

Export Citation Format

Share Document