Low-Temperature Oxidation Catalyst Development Supporting Homogeneous Charge Compression Ignition Development: Final Report

2009 ◽  
Author(s):  
Kenneth G. Rappe ◽  
Darrell R. Herling ◽  
Jonathan L. Male ◽  
Liyu Li ◽  
Yu Su ◽  
...  
2005 ◽  
Vol 6 (4) ◽  
pp. 341-359 ◽  
Author(s):  
H Ogawa ◽  
N Miyamoto ◽  
N Kaneko ◽  
H Ando

Light naphtha, which exhibits two-stage ignition, was induced from the intake manifold and water or a low-ignitability fuel, which does not exhibit low temperature oxidation, was directly injected early in the compression stroke for ignition suppression in an homogeneous charge compression ignition (HCCI) engine. Their quantitative balance was flexibly controlled to optimize ignition timing according to operating conditions. Ultra-low NOx and smokeless combustion without knocking or misfiring was realized over a wide operating range with water or alcohol injection. The water injection significantly reduced the low-temperature oxidation, which suppressed the increase in charge temperature and the rapid combustion caused by the high-temperature oxidation. Rapid combustion was suppressed by reductions in the maximum in-cylinder gas temperature due to water injection while the combustion efficiency suffered. Therefore, the maximum charge temperature needs to be controlled within an extremely limited range to maintain a satisfactory compromise between mild combustion and high combustion efficiency. Alcohols inhibit low-temperature oxidation more strongly than other oxygenated or unoxygenated hydrocarbons, water, and hydrogen. Chemical kinetic modelling with methanol showed a reduction of OH radical before the onset of low-temperature oxidation, and this may be the main mechanism by which alcohols inhibit low-temperature oxidation.


2008 ◽  
Vol 9 (5) ◽  
pp. 399-408 ◽  
Author(s):  
T Shudo

A homogeneous charge compression ignition (HCCI) engine system fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG), both produced from methanol by onboard reformers using exhaust heat, has been proposed in previous research. Adjusting the proportions of DME and MRG with different ignition properties effectively controlled the ignition timing and load in HCCI combustion. The use of the single liquid fuel, methanol, also eliminates the inconvenience of carrying two fuels while maintaining the effective ignition control effect. Because reactions producing DME and MRG from methanol are endothermic, a part of the exhaust gas heat energy can be recovered during the fuel reforming. Methanol can be reformed into various compositions of hydrogen, carbon monoxide, and carbon dioxide. The present paper aims to establish the optimum MRG composition for the system in terms of ignition control and overall efficiency. The results show that an increased hydrogen fraction in MRG retards the onset of high-temperature oxidation and permits operation with higher equivalence ratios. However, the MRG composition affects the engine efficiency only a little, and the MRG produced by the thermal decomposition having the best waste-heat recovery capacity brings the highest overall thermal efficiency in the HCCI engine system fuelled with DME and MRG.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Chao Jin ◽  
Zunqing Zheng

Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI) and low temperature combustion (LTC) modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.


1990 ◽  
Vol 60 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Chen C. Hsu ◽  
Charles S. Dulcey ◽  
James S. Horwitz ◽  
Ming C. Lin

2012 ◽  
Vol 229-231 ◽  
pp. 78-81 ◽  
Author(s):  
Su Wei Zhu ◽  
Chun Mei Wang ◽  
Ye Jian Qian ◽  
Li Jun Ou ◽  
Hui Chun Wang

This study investigates the potential of controlling diesel homogenous charge compression ignition (HCCI) combustion by blending ethanol, which inhibits low temperature oxidation offering the possibility to control ignition in HCCI combustion. The simulation results from a multi-zone model show that the ethanol reduces the key active intermediate radicals OH, CH2O, H2O2, delays the low temperature oxidation reaction (LTR), reduces the heat released during LTR stage. As a result, it retards the main combustion stage.


Sign in / Sign up

Export Citation Format

Share Document