scholarly journals Interactions of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF

2014 ◽  
Author(s):  
Steven Krueger
2018 ◽  
Vol 75 (7) ◽  
pp. 2235-2255 ◽  
Author(s):  
Neil P. Lareau ◽  
Yunyan Zhang ◽  
Stephen A. Klein

Abstract The boundary layer controls on shallow cumulus (ShCu) convection are examined using a suite of remote and in situ sensors at ARM Southern Great Plains (SGP). A key instrument in the study is a Doppler lidar that measures vertical velocity in the CBL and along cloud base. Using a sample of 138 ShCu days, the composite structure of the ShCu CBL is examined, revealing increased vertical velocity (VV) variance during periods of medium cloud cover and higher VV skewness on ShCu days than on clear-sky days. The subcloud circulations of 1791 individual cumuli are also examined. From these data, we show that cloud-base updrafts, normalized by convective velocity, vary as a function of updraft width normalized by CBL depth. It is also found that 63% of clouds have positive cloud-base mass flux and are linked to coherent updrafts extending over the depth of the CBL. In contrast, negative mass flux clouds lack coherent subcloud updrafts. Both sets of clouds possess narrow downdrafts extending from the cloud edges into the subcloud layer. These downdrafts are also present adjacent to cloud-free updrafts, suggesting they are mechanical in origin. The cloud-base updraft data are subsequently combined with observations of convective inhibition to form dimensionless “cloud inhibition” (CI) parameters. Updraft fraction and liquid water path are shown to vary inversely with CI, a finding consistent with CIN-based closures used in convective parameterizations. However, we also demonstrate a limited link between CBL vertical velocity variance and cloud-base updrafts, suggesting that additional factors, including updraft width, are necessary predictors for cloud-base updrafts.


2020 ◽  
Vol 148 (3) ◽  
pp. 1121-1145 ◽  
Author(s):  
Chunxi Zhang ◽  
Yuqing Wang ◽  
Ming Xue

Abstract To accurately simulate the atmospheric state within the planetary boundary layer (PBL) by PBL parameterization scheme in different regions with their dominant weather/climate regimes is important for global/regional atmospheric models. In this study, we introduce the turbulence kinetic energy (TKE) and TKE dissipation rate (ε) based 1.5-order closure PBL parameterization (E–ε, EEPS) in the Weather Research and Forecasting (WRF) Model. The performances of the newly implemented EEPS scheme and the existing Yonsei University (YSU) scheme, the University of Washington (UW) scheme, and Mellor–Yamada–Nakanishi–Niino (MYNN) scheme are evaluated over the stratocumulus dominated southeast Pacific (SEP) and over the Southern Great Plains (SGP) where strong PBL diurnal variation is common. The simulations by these PBL parameterizations are compared with various observations from two field campaigns: the Variability of American Monsoon Systems Project (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS) in 2008 over the SEP and the Land–Atmosphere Feedback Experiment (LAFE) in 2017 over the SGP. Results show that the EEPS and YSU schemes perform comparably over both regions, while the MYNN scheme performs differently in many aspects, especially over the SEP. The EEPS (MYNN) scheme slightly (significantly) underestimates liquid water path over the SEP. Compared with observations, the UW scheme produces the best PBL height over the SEP. The MYNN produces too high PBL height over the western part of the SEP while both the YSU and EEPS schemes produce too low PBL and cloud-top heights. The differences among the PBL schemes in simulating the PBL features over the SGP are relatively small.


2021 ◽  
Author(s):  
Raghavendra Krishnamurthy ◽  
Rob Newsom ◽  
Duli Chand ◽  
William Shaw

2017 ◽  
Author(s):  
Haihan Chen ◽  
Anna L. Hodshire ◽  
John Ortega ◽  
James Greenberg ◽  
Peter H. McMurry ◽  
...  

Abstract. Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11–16 nm diameter particles from ground level to 1000 m observed during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. Those observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11–16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman Lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic, and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water soluble species like organic acids into ambient nanoparticles.


2014 ◽  
Vol 15 (5) ◽  
pp. 1932-1953 ◽  
Author(s):  
Jessica M. Erlingis ◽  
Ana P. Barros

Abstract This study examines whether and how land–atmosphere interactions can have an impact on nocturnal convection over the southern Great Plains (SGP) through numerical simulations of an intense nocturnal mesoscale convective system (MCS) on 19–20 June 2007 with the Weather Research and Forecasting (WRF) Model. High-resolution nested simulations were conducted using realistic and idealized land surfaces and two planetary boundary layer (PBL) parameterizations (PBLp): Yonsei University (YSU) and Mellor–Yamada–Janjić (MYJ). Differences in timing and amount of MCS precipitation among observations and model results were examined in the light of daytime land–atmosphere interactions, nocturnal prestorm environment, and cold pool strength. At the meso-γ scale, land cover and soil type have as much of an effect on the simulated prestorm environment as the choice of PBLp: MYJ simulations exhibit strong sensitivity to changes in the land surface in contrast to negligible impact in the case of YSU. At the end of the afternoon, as the boundary layer collapses, a more homogeneous and deeper PBL (and stronger low-level shear) is evident for YSU as compared to MYJ when initial conditions and land surface properties are the same. At the meso-β scale, propagation speed is faster and organization (bow echo morphology) and cold pool strength are enhanced when nocturnal PBL heights are higher, and there is stronger low-level shear in the prestorm environment independent of the boundary layer parameterization for different land surface conditions. A comparison of one- and two-way nested MYJ results demonstrates how daytime land–atmosphere interactions modify the prestorm environment remotely through advection of low-level thermodynamic features. This remote feedback strongly impacts the MCS development phase as well as its spatial organization and propagation velocity and, consequently, nocturnal rainfall. These results indicate that synoptic- and meso-α-scale dynamics can play an important role in determining the spatial and temporal scales over which precipitation feedbacks of land–atmosphere interactions emerge regionally. Finally, this study demonstrates the high degree of uncertainty in defining the spatial and temporal scales of land–atmosphere interactions where and when organized convection is dominant.


2018 ◽  
Vol 18 (1) ◽  
pp. 311-326 ◽  
Author(s):  
Haihan Chen ◽  
Anna L. Hodshire ◽  
John Ortega ◽  
James Greenberg ◽  
Peter H. McMurry ◽  
...  

Abstract. Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11–16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11–16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.


Author(s):  
Kevin J. Nelson ◽  
Feiqin Xie ◽  
Chi O. Ao ◽  
Mayra I. Oyola-Merced

AbstractThe planetary boundary layer (PBL) height (PBLH) is a key physical parameter of the PBL affected by numerous physical processes within the boundary layer. Specifically, the PBLH over land exhibits large spatial and temporal variation across different geographical regions. In this study, the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) and high- resolution radiosonde profiles from 2007 to 2013 were analyzed to estimate the diurnal cycle of the PBLH over the Southern Great Plains (SGP) in the US. Large variations in PBLH derived from radiosonde temperature, moisture, and refractivity are observed on seasonal scales. COSMIC RO is capable of observing diurnal and seasonal variations in the terrestrial PBLH over the SGP region. Annual mean diurnal amplitude of approximately 250 m in the terrestrial PBLH was observed, with maxima occurring at around 15:00 (LST, Local Solar Time) in both the co-located radiosondes and COSMIC RO profiles. Seasonal changes in the PBLH diurnal cycles ranging from approximately 100 m to 400 m were also observed. Such PBL diurnal and seasonal changes can be further incorporated into PBL parameterizations to help improve weather and climate model prediction.


Sign in / Sign up

Export Citation Format

Share Document