Evaluation of an E–ε and Three Other Boundary Layer Parameterization Schemes in the WRF Model over the Southeast Pacific and the Southern Great Plains

2020 ◽  
Vol 148 (3) ◽  
pp. 1121-1145 ◽  
Author(s):  
Chunxi Zhang ◽  
Yuqing Wang ◽  
Ming Xue

Abstract To accurately simulate the atmospheric state within the planetary boundary layer (PBL) by PBL parameterization scheme in different regions with their dominant weather/climate regimes is important for global/regional atmospheric models. In this study, we introduce the turbulence kinetic energy (TKE) and TKE dissipation rate (ε) based 1.5-order closure PBL parameterization (E–ε, EEPS) in the Weather Research and Forecasting (WRF) Model. The performances of the newly implemented EEPS scheme and the existing Yonsei University (YSU) scheme, the University of Washington (UW) scheme, and Mellor–Yamada–Nakanishi–Niino (MYNN) scheme are evaluated over the stratocumulus dominated southeast Pacific (SEP) and over the Southern Great Plains (SGP) where strong PBL diurnal variation is common. The simulations by these PBL parameterizations are compared with various observations from two field campaigns: the Variability of American Monsoon Systems Project (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS) in 2008 over the SEP and the Land–Atmosphere Feedback Experiment (LAFE) in 2017 over the SGP. Results show that the EEPS and YSU schemes perform comparably over both regions, while the MYNN scheme performs differently in many aspects, especially over the SEP. The EEPS (MYNN) scheme slightly (significantly) underestimates liquid water path over the SEP. Compared with observations, the UW scheme produces the best PBL height over the SEP. The MYNN produces too high PBL height over the western part of the SEP while both the YSU and EEPS schemes produce too low PBL and cloud-top heights. The differences among the PBL schemes in simulating the PBL features over the SGP are relatively small.

2018 ◽  
Vol 75 (7) ◽  
pp. 2235-2255 ◽  
Author(s):  
Neil P. Lareau ◽  
Yunyan Zhang ◽  
Stephen A. Klein

Abstract The boundary layer controls on shallow cumulus (ShCu) convection are examined using a suite of remote and in situ sensors at ARM Southern Great Plains (SGP). A key instrument in the study is a Doppler lidar that measures vertical velocity in the CBL and along cloud base. Using a sample of 138 ShCu days, the composite structure of the ShCu CBL is examined, revealing increased vertical velocity (VV) variance during periods of medium cloud cover and higher VV skewness on ShCu days than on clear-sky days. The subcloud circulations of 1791 individual cumuli are also examined. From these data, we show that cloud-base updrafts, normalized by convective velocity, vary as a function of updraft width normalized by CBL depth. It is also found that 63% of clouds have positive cloud-base mass flux and are linked to coherent updrafts extending over the depth of the CBL. In contrast, negative mass flux clouds lack coherent subcloud updrafts. Both sets of clouds possess narrow downdrafts extending from the cloud edges into the subcloud layer. These downdrafts are also present adjacent to cloud-free updrafts, suggesting they are mechanical in origin. The cloud-base updraft data are subsequently combined with observations of convective inhibition to form dimensionless “cloud inhibition” (CI) parameters. Updraft fraction and liquid water path are shown to vary inversely with CI, a finding consistent with CIN-based closures used in convective parameterizations. However, we also demonstrate a limited link between CBL vertical velocity variance and cloud-base updrafts, suggesting that additional factors, including updraft width, are necessary predictors for cloud-base updrafts.


2010 ◽  
Vol 10 (21) ◽  
pp. 10639-10654 ◽  
Author(s):  
C. S. Bretherton ◽  
R. Wood ◽  
R. C. George ◽  
D. Leon ◽  
G. Allen ◽  
...  

Abstract. Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx) are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a~transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K), sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with accumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m) and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important. Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore. Winds from ECMWF and NCEP operational analyses have an rms difference of only 1 m s−1 from collocated airborne leg-mean observations in the boundary layer and 2 m s−1 above the boundary layer. This supports the use of trajectory analysis for interpreting REx observations. Two-day back-trajectories from the 20° S transect suggest that eastward of 75° W, boundary layer (and often free-tropospheric) air has usually been exposed to South American coastal aerosol sources, while at 85° W, neither boundary-layer or free-tropospheric air has typically had such contact.


2016 ◽  
Vol 55 (3) ◽  
pp. 791-809 ◽  
Author(s):  
Temple R. Lee ◽  
Stephan F. J. De Wekker

AbstractThe planetary boundary layer (PBL) height is an essential parameter required for many applications, including weather forecasting and dispersion modeling for air quality. Estimates of PBL height are not easily available and often come from twice-daily rawinsonde observations at airports, typically at 0000 and 1200 UTC. Questions often arise regarding the applicability of PBL heights retrieved from these twice-daily observations to surrounding locations. Obtaining this information requires knowledge of the spatial variability of PBL heights. This knowledge is particularly limited in regions with mountainous terrain. The goal of this study is to develop a method for estimating daytime PBL heights in the Page Valley, located in the Blue Ridge Mountains of Virginia. The approach includes using 1) rawinsonde observations from the nearest sounding station [Dulles Airport (IAD)], which is located 90 km northeast of the Page Valley, 2) North American Regional Reanalysis (NARR) output, and 3) simulations with the Weather Research and Forecasting (WRF) Model. When selecting days on which PBL heights from NARR compare well to PBL heights determined from the IAD soundings, it is found that PBL heights are higher (on the order of 200–400 m) over the Page Valley than at IAD and that these differences are typically larger in summer than in winter. WRF simulations indicate that larger sensible heat fluxes and terrain-following characteristics of PBL height both contribute to PBL heights being higher over the Page Valley than at IAD.


2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2019 ◽  
Vol 35 (2) ◽  
pp. 467-488 ◽  
Author(s):  
Justin R. Minder ◽  
W. Massey Bartolini ◽  
Christopher Spence ◽  
Newell R. Hedstrom ◽  
Peter D. Blanken ◽  
...  

Abstract Lake-effect snow (LeS) storms are driven by strong turbulent surface layer (SL) and planetary boundary layer (PBL) fluxes of heat and moisture caused by the flow of cold air over relatively warm water. To investigate the sensitivity of simulated LeS to the parameterization of SL and PBL turbulence, high-resolution simulations of two major storms, downwind of Lakes Superior and Ontario, are conducted using the Weather Research and Forecasting Model. Multischeme and parameter sensitivity experiments are conducted. Measurements of overlake fluxes and downwind snowfall are used to evaluate the simulations. Consistent with previous studies, LeS is found to be strongly sensitive to SL and PBL parameterization choices. Simulated precipitation accumulations differ by up to a factor of 2 depending on the schemes used. Differences between SL schemes are the dominant source of this sensitivity. Parameterized surface fluxes of sensible and latent heat can each vary by over 100 W m−2 between SL schemes. The magnitude of these fluxes is correlated with the amount of downwind precipitation. Differences between PBL schemes play a secondary role, but have notable impacts on storm morphology. Many schemes produce credible simulations of overlake fluxes and downwind snowfall. However, the schemes that produce the largest surface fluxes produce fluxes and precipitation accumulations that are biased high relative to observations. For two SL schemes studied in detail, unrealistically large fluxes can be attributed to parameter choices: the neutral stability turbulent Prandtl number and the threshold friction velocity used for defining regimes in the overwater surface roughness calculation.


2014 ◽  
Vol 53 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich

AbstractAs computing capabilities expand, operational and research environments are moving toward the use of finescale atmospheric numerical models. These models are attractive for users who seek an accurate description of small-scale turbulent motions. One such numerical tool is the Weather Research and Forecasting (WRF) model, which has been extensively used in synoptic-scale and mesoscale studies. As finer-resolution simulations become more desirable, it remains a question whether the model features originally designed for the simulation of larger-scale atmospheric flows will translate to adequate reproductions of small-scale motions. In this study, turbulent flow in the dry atmospheric convective boundary layer (CBL) is simulated using a conventional large-eddy-simulation (LES) code and the WRF model applied in an LES mode. The two simulation configurations use almost identical numerical grids and are initialized with the same idealized vertical profiles of wind velocity, temperature, and moisture. The respective CBL forcings are set equal and held constant. The effects of the CBL wind shear and of the varying grid spacings are investigated. Horizontal slices of velocity fields are analyzed to enable a comparison of CBL flow patterns obtained with each simulation method. Two-dimensional velocity spectra are used to characterize the planar turbulence structure. One-dimensional velocity spectra are also calculated. Results show that the WRF model tends to attribute slightly more energy to larger-scale flow structures as compared with the CBL structures reproduced by the conventional LES. Consequently, the WRF model reproduces relatively less spatial variability of the velocity fields. Spectra from the WRF model also feature narrower inertial spectral subranges and indicate enhanced damping of turbulence on small scales.


2012 ◽  
Vol 140 (2) ◽  
pp. 664-682 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Jimy Dudhia

The lowest model level height z1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z1 is within the surface layer. In this study, impacts of z1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF) model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor–Yamada–Janjić (MYJ) scheme. Surface variables are sensitive to z1 in daytime when z1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.


2016 ◽  
Vol 144 (3) ◽  
pp. 1161-1177 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Jimy Dudhia

Abstract Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model. Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.


Sign in / Sign up

Export Citation Format

Share Document