scholarly journals SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

2009 ◽  
Author(s):  
Norman Munroe
Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119216
Author(s):  
Seyedsaeed Mehrabi-Kalajahi ◽  
Mikhail A. Varfolomeev ◽  
Chengdong Yuan ◽  
Almaz L. Zinnatullin ◽  
Nikolay O. Rodionov ◽  
...  

2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


2019 ◽  
Vol 34 (1) ◽  
pp. 360-367 ◽  
Author(s):  
Qiuyang Zhao ◽  
Liejin Guo ◽  
Yechun Wang ◽  
Hui Jin ◽  
Lei Chen ◽  
...  

2000 ◽  
Vol 116 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Kyuro SASAKI ◽  
Satoshi AKIBAYASHI ◽  
Toshiyuki HIRATA

Geophysics ◽  
1987 ◽  
Vol 52 (11) ◽  
pp. 1457-1465 ◽  
Author(s):  
E. F. Laine

Cross‐borehole seismic velocity and high‐frequency electromagnetic (EM) attenuation data were obtained to construct tomographic images of heavy oil sands in a steam‐flood environment. First‐arrival seismic data were used to construct a tomographic color image of a 10 m by 8 m vertical plane between the two boreholes. Two high‐frequency (17 and 15 MHz) EM transmission tomographs were constructed of a 20 m by 8 m vertical plane. The velocity tomograph clearly shows a shale layer with oil sands above it and below it. The EM tomographs show a more complex geology of oil sands with shale inclusions. The deepest EM tomograph shows the upper part of an active steam zone and suggests steam chanelling just below the shale layer. These results show the detailed structure of the entire plane between boreholes and may provide a better means to understand the process for in situ heavy oil recovery in a steam‐flood environment.


Sign in / Sign up

Export Citation Format

Share Document