scholarly journals Validation and quantification of uncertainty in coupled climate models using network analysis

2015 ◽  
Author(s):  
Annalisa Bracco
2018 ◽  
Vol 31 (2) ◽  
pp. 655-670 ◽  
Author(s):  
YuJia You ◽  
Xiaojing Jia

The interannual variations and the prediction of the leading two empirical orthogonal function (EOF) modes of spring (April–May) precipitation over China for the period from 1951 to 2014 are investigated using both observational data and the seasonal forecast made by six coupled climate models. The leading EOF mode of spring precipitation over China (EOF1-prec) features a monosign pattern, with the maximum loading located over southern China. The ENSO-related tropical Pacific SST anomalies in the previous winter can serve as a precursor for EOF1-prec. The second EOF mode of spring precipitation (EOF2-prec) over China is characterized by a dipole structure, with one pole near the Yangtze River and the other one with opposite sign over the Pearl River delta. A North Atlantic sea surface temperature (SST) anomaly dipole in the preceding March is found contribute to the prec-EOF2 and can serve as its predictor. A physics-based empirical (P-E) model is then formulated using the two precursors revealed by the observational analysis to forecast the variations of EOF1-prec and EOF2-prec. Compared to coupled climate models, which have little skill in forecasting the time variations of the two EOF modes, this P-E model can significantly improve the forecast skill of their time variations. A linear regression model is further established using the time series forecast by the P-E model to forecast the spring precipitation over China. Results suggest that the seasonal forecast skill of the spring precipitation over southeastern China, especially over the Yangtze River area, can be significantly improved by the regression model.


2021 ◽  
pp. 5-23
Author(s):  
M. A. Kolennikova ◽  
◽  
P. N. Vargin ◽  
D. Yu. Gushchina ◽  
◽  
...  

The response of the Arctic stratosphere to El Nio is studied with account of its Eastern and Central Pacific types for the period of 1950-2005. The study is based on the regression and composite analysis using the simulations with six CMIP5 coupled climate models and reanalysis data.


2007 ◽  
Vol 30 (6) ◽  
pp. 605-619 ◽  
Author(s):  
Bin Wang ◽  
June-Yi Lee ◽  
I.-S. Kang ◽  
J. Shukla ◽  
J.-S. Kug ◽  
...  

2012 ◽  
Vol 8 (2) ◽  
pp. 787-802 ◽  
Author(s):  
B. Meyssignac ◽  
D. Salas y Melia ◽  
M. Becker ◽  
W. Llovel ◽  
A. Cazenave

Abstract. In this study we focus on the sea level trend pattern observed by satellite altimetry in the tropical Pacific over the 1993–2009 time span (i.e. 17 yr). Our objective is to investigate whether this 17-yr-long trend pattern was different before the altimetry era, what was its spatio-temporal variability and what have been its main drivers. We try to discriminate the respective roles of the internal variability of the climate system and of external forcing factors, in particular anthropogenic emissions (greenhouse gases and aerosols). On the basis of a 2-D past sea level reconstruction over 1950–2009 (based on a combination of observations and ocean modelling) and multi-century control runs (i.e. with constant, preindustrial external forcing) from eight coupled climate models, we have investigated how the observed 17-yr sea level trend pattern evolved during the last decades and centuries, and try to estimate the characteristic time scales of its variability. For that purpose, we have computed sea level trend patterns over successive 17-yr windows (i.e. the length of the altimetry record), both for the 60-yr long reconstructed sea level and the model runs. We find that the 2-D sea level reconstruction shows spatial trend patterns similar to the one observed during the altimetry era. The pattern appears to have fluctuated with time with a characteristic time scale of the order of 25–30 yr. The same behaviour is found in multi-centennial control runs of the coupled climate models. A similar analysis is performed with 20th century coupled climate model runs with complete external forcing (i.e. solar plus volcanic variability and changes in anthropogenic forcing). Results suggest that in the tropical Pacific, sea level trend fluctuations are dominated by the internal variability of the ocean–atmosphere coupled system. While our analysis cannot rule out any influence of anthropogenic forcing, it concludes that the latter effect in that particular region is stillhardly detectable.


2015 ◽  
Vol 12 (24) ◽  
pp. 7503-7518 ◽  
Author(s):  
M. G. De Kauwe ◽  
S.-X. Zhou ◽  
B. E. Medlyn ◽  
A. J. Pitman ◽  
Y.-P. Wang ◽  
...  

Abstract. Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSM and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.


2008 ◽  
Vol 51 (2) ◽  
pp. 223-239 ◽  
Author(s):  
Xiao-Ge XIN ◽  
Tian-Jun ZHOU ◽  
Ru-Cong YU

2018 ◽  
Vol 123 (6) ◽  
pp. 4338-4359 ◽  
Author(s):  
Neil F. Tandon ◽  
Paul J. Kushner ◽  
David Docquier ◽  
Justin J. Wettstein ◽  
Camille Li

Sign in / Sign up

Export Citation Format

Share Document