scholarly journals Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

2013 ◽  
Author(s):  
Jennifer Hutchings ◽  
Renu Joseph
2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2014 ◽  
Vol 14 (24) ◽  
pp. 13571-13600 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. Sea ice is the central component and most sensitive indicator of the Arctic climate system. Both the depletion and areal decline of the Arctic sea ice cover, observed since the 1970s, have accelerated since the millennium. While the relationship of global warming to sea ice reduction is evident and underpinned statistically, it is the connecting mechanisms that are explored in detail in this review. Sea ice erodes both from the top and the bottom. Atmospheric, oceanic and sea ice processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system: the amplification is both supported by the ice depletion and, at the same time, accelerates ice reduction. Knowledge of the mechanisms of sea ice decline grew during the 1990s and deepened when the acceleration became clear in the early 2000s. Record minimum summer sea ice extents in 2002, 2005, 2007 and 2012 provide additional information on the mechanisms. This article reviews recent progress in understanding the sea ice decline. Processes are revisited from atmospheric, oceanic and sea ice perspectives. There is strong evidence that decisive atmospheric changes are the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo, and ice thickness allow for additional local atmospheric and oceanic influences and self-supporting feedbacks. Large-scale ocean influences on Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. There is little indication of a direct and decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2006 ◽  
Vol 52 (178) ◽  
pp. 433-439 ◽  
Author(s):  
Larissa Nazarenko ◽  
Nickolai Tausnev ◽  
James Hansen

AbstractUsing a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.


2020 ◽  
Author(s):  
Ann Keen ◽  
Ed Blockley ◽  
David Bailey ◽  
Jens Boldingh Debernard ◽  
Mitchell Bushuk ◽  
...  

Abstract. We compare the mass budget of the Arctic sea ice for 14 models submitted to the latest Climate Model Inter-comparison Project (CMIP6), using new diagnostics that have not been available for previous model inter-comparisons. Using these diagnostics allows us to look beyond the standard metrics of ice cover and thickness, to compare the processes of sea ice growth and loss in climate models in a more detailed way than has previously been possible. For the 1960–89 multi-model mean, the dominant processes causing annual ice growth are basal growth and frazil ice formation, which both occur during the winter. The main processes by which ice is lost are basal melting, top melting and advection of ice out of the Arctic. The first two processes occur in summer, while the latter process is present all year. The sea-ice budgets for individual models are strikingly similar overall in terms of the major processes causing ice growth and loss, and in terms of the time of year during which each process is important. However, there are also some key differences between the models. The relative amounts of frazil and basal ice formation varies between the models. This is, to some extent at least, attributable to exactly how the frazil growth is formulated within each model. There are also differences in the relative amounts of top and basal melting. As the ice cover and mass decline during the 21st century, we see a shift in the timing of the top and basal melting in the multi-model mean, with more melt occurring earlier in the year, and less melt later in the summer. The amount of basal growth in the autumn reduces, but the amount of basal growth later in the winter increases due to the ice being thinner. Overall, extra ice loss in May–June and reduced ice growth in October-November is partially offset by reduced ice melt in August and increased ice growth in January–February. For the individual models, changes in the budget components vary considerably in terms of magnitude and timing of change. However, when the evolving budget terms are considered as a function of the changing ice state itself, behaviours common to all the models emerge, suggesting that the sea ice components of the models are fundamentally responding in a broadly consistent way to the warming climate. Additional results from a forced ocean-ice model show that although atmospheric forcing is crucial for the sea ice mass budget, the sea ice physics also plays an important role.


2019 ◽  
Vol 15 (3) ◽  
pp. 893-912 ◽  
Author(s):  
Christian Holme ◽  
Vasileios Gkinis ◽  
Mika Lanzky ◽  
Valerie Morris ◽  
Martin Olesen ◽  
...  

Abstract. This study examines the stable water isotope signal (δ18O) of three ice cores drilled on the Renland peninsula (east Greenland coast). While ice core δ18O measurements qualitatively are a measure of the local temperature history, the δ18O variability in precipitation actually reflects the integrated hydrological activity that the deposited ice experienced from the evaporation source to the condensation site. Thus, as Renland is located next to fluctuating sea ice cover, the transfer function used to infer past temperatures from the δ18O variability is potentially influenced by variations in the local moisture conditions. The objective of this study is therefore to evaluate the δ18O variability of ice cores drilled on Renland and examine the amount of the signal that can be attributed to regional temperature variations. In the analysis, three ice cores are utilized to create stacked summer, winter and annually averaged δ18O signals (1801–2014 CE). The imprint of temperature on δ18O is first examined by correlating the δ18O stacks with instrumental temperature records from east Greenland (1895–2014 CE) and Iceland (1830–2014 CE) and with the regional climate model HIRHAM5 (1980–2014 CE). The results show that the δ18O variability correlates with regional temperatures on both a seasonal and an annual scale between 1910 and 2014, while δ18O is uncorrelated with Iceland temperatures between 1830 and 1909. Our analysis indicates that the unstable regional δ18O–temperature correlation does not result from changes in weather patterns through strengthening and weakening of the North Atlantic Oscillation. Instead, the results imply that the varying δ18O–temperature relation is connected with the volume flux of sea ice exported through Fram Strait (and south along the coast of east Greenland). Notably, the δ18O variability only reflects the variations in regional temperature when the temperature anomaly is positive and the sea ice export anomaly is negative. It is hypothesized that this could be caused by a larger sea ice volume flux during cold years which suppresses the Iceland temperature signature in the Renland δ18O signal. However, more isotope-enabled modeling studies with emphasis on coastal ice caps are needed in order to quantify the mechanisms behind this observation. As the amount of Renland δ18O variability that reflects regional temperature varies with time, the results have implications for studies performing regression-based δ18O–temperature reconstructions based on ice cores drilled in the vicinity of a fluctuating sea ice cover.


Author(s):  
Xiying Liu ◽  
Chenchen Lu

Abstract To get insights into the effects of sea ice change on the Arctic climate, a polar atmospheric regional climate model was used to perform two groups of numerical experiments with prescribed sea ice cover of typical mild and severe sea ice. In experiments within the same group, the lateral boundary conditions and initial values were kept the same. The prescribed sea ice concentration (SIC) and other fields for the lower boundary conditions were changed every six hours. 10-year integration was completed, and monthly mean results were saved for analysis in each experiment. It is shown that the changes in annual mean surface air temperature have close connections with that in SIC, and the maximum change of temperature surpasses 15 K. The effects of SIC changes on 850 hPa air temperature is also evident, with more significant changes in the group with reduced sea ice. The higher the height, the weaker the response in air temperature to SIC change. The annual mean SIC change creates the pattern of differences in annual mean sea level pressure. The degree of significance in pressure change is modulated by atmospheric stratification stability. In response to reduction/increase of sea ice, the intensity of polar vortex weakens/strengthens.


2020 ◽  
Author(s):  
Tian Tian ◽  
Shuting Yang ◽  
Pasha Karami ◽  
François Massonnet ◽  
Tim Kruschke ◽  
...  

<p>The Arctic has lost more than 50% multiyear sea ice (MYI) area during 1999-2017. Observation analysis suggests that if the decline of the MYI coverage continues, changes in the Arctic ice cover (i.e. area and volume) will be more controlled by seasonal ice than the effect of global warming. To investigate how large and where the source of Arctic prediction skill is given a large losses of thick MYI during the last two decades, we explore the decadal prediction skills and sensitivity to sea ice thickness (SIT) initialization from the EC-Earth3 Climate Prediction System with Anomaly Initialization (EC-Earth3-CPSAI). Three sets of ensemble hind-cast experiments following the protocol for the CMIP6 Decadal Climate Prediction Project (DCPP) are carried out in which the predictions start from: 1) a baseline system with ocean only initialization; 2) with ocean and sea ice concentration (SIC) initialization; 3) with ocean, SIC and SIT initialization. The hind-cast experiments are initialized and validated based on the ERA-Interim-reanalysis for the atmosphere and ORAS5 for ocean and sea-ice, with a focus period 1997-2016. All initialized experiments show better agreement with ORAS5 than the CMIP6 historical run (i.e. the Free run) for the first winter sea ice forecast. The SIT initialized experiments show the best skill in predicting SIT (or volume) and the added value by greatly reducing errors of near surface air temperature over the Greenland and its surrounding waters. In the Central Arctic, the Beaufort and East Siberian Seas, there are only minor differences in prediction skills on seasonal to decadal time scales between the ocean-only initialized and the SIT initialized experiments, indicating that the source of predictability in these regions are mainly from the ocean; while the ocean-only initialization degrades skill with larger RMSE than the Free run, e.g. during the ice-freezing season in the GIN and Barents Seas, or at  the summer minimum in the Kara Sea, the added value from the SIT initialized experiment is present, and it may have long-term effect (>4 years) probably associated with sea-ice recirculation. In all cases, the improvement from the ocean-only initialization to also including SIC initialization is found negligible, even somehow degrading the skills. This highlights the important use of SIT in predicting changes in the Arctic sea ice cover at various time scales during the study period. Therefore, the sea-ice initialization with constraint on SIT is recommended as the most effective initialization strategy in our EC-Earth3-CPSAI for present climate prediction from seasonal to decadal time scales.</p>


Sign in / Sign up

Export Citation Format

Share Document