scholarly journals Analysis of Sea Ice Cover Sensitivity in Global Climate Model

2014 ◽  
Vol 14 (04) ◽  
Author(s):  
Valeri Parhomenko
2012 ◽  
Vol 6 (1) ◽  
pp. 193-198 ◽  
Author(s):  
J. K. Ridley ◽  
J. A. Lowe ◽  
H. T. Hewitt

Abstract. It is well accepted that increasing atmospheric CO2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3 is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO2 is first ramped up to four times pre-industrial levels (4 × CO2), then ramped down to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO2 prior to ramping CO2 down to pre-industrial levels. Against global mean temperature, Arctic sea ice area is reversible, while the Antarctic sea ice shows some asymmetric behaviour – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the asymmetric behaviour is driven by hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.


Polar Record ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 91-106 ◽  
Author(s):  
Øistein Harsem ◽  
Knut Heen ◽  
J.M.P. Rodrigues ◽  
Terje Vassdal

ABSTRACTThe aim of this study is to investigate how reduction in the sea ice cover may affect oil activity in the Arctic during the next 30 years. The Arctic is divided into 21 oil provinces. A multidisciplinary approach is applied drawing on both the comparative cost techniques as developed in location theory and sea ice cover projections. The comparative cost technique implies a systematic listing of cost differentials by oil provinces. The sea ice projections are based on the NCAR CCSM3 global climate model under the A1B and A2 emission scenarios. The article concludes that the north Norwegian Sea, and south and west Barents Sea will remain the most attractive areas for oil exploration in the coming 30 years. Furthermore, due to sea ice decline, the north and east Barents Sea and north and west Kara Sea will become more attractive. However, most Arctic provinces will remain high cost regions.


2001 ◽  
Vol 33 ◽  
pp. 513-520 ◽  
Author(s):  
Larissa Nazarenko ◽  
James Hansen ◽  
Nikolai Tausnev ◽  
Reto Ruedy

AbstractThe Q.-flux Goddard Institute of Space Studies (GISS) global climate model, in which an atmospheric general circulation model is coupled to a mixed-layer ocean with specified horizontal heat transports, is used to simulate the transient and equilibrium climate response to a gradual increase of carbon dioxide (1% per year increase of CO2 to doubled CO2). The results indicate that the current GISS model has a high sensitivity with a global annual warming of about 4°C for doubled CO2 . Enhanced warming is found at higher latitudes near sea-ice margins due to retreat of sea ice in the greenhouse experiment. Surface warming is larger in winter than in summer, in part because of the reductions in ice cover and thickness that insulate the winter atmosphere from the ocean. The annual mean reduction of sea-ice cover due to doubled CO2 is about 30% for the Northern Hemisphere. The CO2 experiment has a 70% reduction of sea-ice area and 55% thinning of ice in August in the Northern Hemisphere. Noticeable reduction of sea-ice cover has been found in both historical records and satellite observations. The largest reduction of simulated sea-ice extent occurs in summer, consistent with observations.


2011 ◽  
Vol 5 (5) ◽  
pp. 2349-2363 ◽  
Author(s):  
J. K. Ridley ◽  
J. A. Lowe ◽  
H. T. Hewitt

Abstract. It is well accepted that increasing atmospheric CO2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3, is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO2 is first ramped up to four times pre-industrial levels (4 × CO2) then ramped down back to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO2 prior to ramping CO2 down to pre-industrial levels. Against global mean temperature Arctic sea ice area has little hysteresis while the Antarctic sea ice shows significant hysteresis – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the driver of the hysteresis is the hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.


2007 ◽  
Vol 20 (24) ◽  
pp. 5946-5961 ◽  
Author(s):  
Jan Sedlacek ◽  
Jean-François Lemieux ◽  
Lawrence A. Mysak ◽  
L. Bruno Tremblay ◽  
David M. Holland

Abstract The granular sea ice model (GRAN) from Tremblay and Mysak is converted from Cartesian to spherical coordinates. In this conversion, the metric terms in the divergence of the deviatoric stress and in the strain rates are included. As an application, the GRAN is coupled to the global Earth System Climate Model from the University of Victoria. The sea ice model is validated against standard datasets. The sea ice volume and area exported through Fram Strait agree well with values obtained from in situ and satellite-derived estimates. The sea ice velocity in the interior Arctic agrees well with buoy drift data. The thermodynamic behavior of the sea ice model over a seasonal cycle at one location in the Beaufort Sea is validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets. The thermodynamic growth rate in the model is almost twice as large as the observed growth rate, and the melt rate is 25% lower than observed. The larger growth rate is due to thinner ice at the beginning of the SHEBA period and the absence of internal heat storage in the ice layer in the model. The simulated lower summer melt is due to the smaller-than-observed surface melt.


2006 ◽  
Vol 52 (178) ◽  
pp. 433-439 ◽  
Author(s):  
Larissa Nazarenko ◽  
Nickolai Tausnev ◽  
James Hansen

AbstractUsing a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.


2014 ◽  
Vol 7 (6) ◽  
pp. 8975-9015
Author(s):  
E. M. Knudsen ◽  
J. E. Walsh

Abstract. Metrics of storm activity in Northern Hemisphere high- and midlatitudes are evaluated from historical output and future projections by the Norwegian Earth System Model (NorESM1-M) coupled global climate model. The European Re-Analysis Interim (ERA-Interim) and the Community Climate System Model (CCSM4), a global climate model of the same vintage as NorESM1-M, provide benchmarks for comparison. The focus is on the autumn and early winter (September through December), the period when the ongoing and projected Arctic sea ice retreat is greatest. Storm tracks derived from a vorticity-based algorithm for storm identification are reproduced well by NorESM1-M, although the tracks are somewhat better resolved in the higher-resolution ERA-Interim and CCSM4. The tracks are projected to shift polewards in the future as climate changes under the Representative Concentration Pathway (RCP) forcing scenarios. Cyclones are projected to become generally more intense in the high-latitudes, especially over the Alaskan region, although in some other areas the intensity is projected to decrease. While projected changes in track density are less coherent, there is a general tendency towards less frequent storms in midlatitudes and more frequent storms in high-latitudes, especially the Baffin Bay/Davis Strait region. Autumn precipitation is projected to increase significantly across the entire high-latitudes. Together with the projected increases in storm intensity and sea level and the loss of sea ice, this increase in precipitation implies a greater vulnerability to coastal flooding and erosion, especially in the Alaskan region. The projected changes in storm intensity and precipitation (as well as sea ice and sea level pressure) scale generally linearly with the RCP value of the forcing and with time through the 21st century.


2014 ◽  
Vol 7 (5) ◽  
pp. 7121-7150 ◽  
Author(s):  
M. S. Mallard ◽  
C. G. Nolte ◽  
T. L. Spero ◽  
O. R. Bullock ◽  
K. Alapaty ◽  
...  

Abstract. The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional downscaled fields, inland lakes are often poorly resolved in the driving global fields, if they are resolved at all. In such an application, using WRF's default interpolation methods can result in unrealistic lake temperatures and ice cover at inland water points. Prior studies have shown that lake temperatures and ice cover impact the simulation of other surface variables, such as air temperatures and precipitation, two fields that are often used in regional climate applications to understand the impacts of climate change on human health and the environment. Here, alternative methods for setting lake surface variables in WRF for downscaling simulations are presented and contrasted.


Sign in / Sign up

Export Citation Format

Share Document