scholarly journals A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

2017 ◽  
Author(s):  
Craig Michael Vineyard ◽  
Stephen Joseph Verzi
2021 ◽  
Vol 32 (8) ◽  
pp. 2035-2048
Author(s):  
Mochamad Asri ◽  
Dhairya Malhotra ◽  
Jiajun Wang ◽  
George Biros ◽  
Lizy K. John ◽  
...  

2017 ◽  
Vol 29 (3) ◽  
Author(s):  
Mabule Samuel Mabakane ◽  
Daniel Mojalefa Moeketsi ◽  
Anton Lopis

This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY) performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255832
Author(s):  
Mohamed H. Mousa ◽  
Mohamed K. Hussein

Due to advances in high-performance computing technologies, computer graphics techniques—especially those related to mesh simplification—have been noticeably improved. These techniques, which have a strong impact on many applications, such as geometric modeling and visualization, have been well studied for more than two decades. Recent advances in GPUs have led to significant improvements in terms of speed and interactivity. In this paper, we present a mesh simplification algorithm that benefits from the parallel framework provided by recent GPUs. We customize the halfedge data structure for adaption with the dynamic memory restrictions of CUDA. The proposed algorithm is fully parallelized by employing a lock-free skip priority queue and a set of disjoint regions of the mesh. The proposed technique accelerates the simplification process while preserving the topological properties of the mesh. Some results and comparisons are provided to verify the efficiency of the proposed algorithm.


2013 ◽  
Vol 20 ◽  
pp. 156-162 ◽  
Author(s):  
Peter Dugan ◽  
Mohammad Pourhomayoun ◽  
Yu Shiu ◽  
Rosemary Paradis ◽  
Aaron Rice ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document