scholarly journals NOx Sensor for Monitoring Emissions, CRADA TC02179.0

2021 ◽  
Author(s):  
B Glass ◽  
L Woo ◽  
R Aines ◽  
P Thompson ◽  
J Steppan
Keyword(s):  

2019 ◽  
Vol 3 (10) ◽  
pp. 163-171 ◽  
Author(s):  
Daisuke Koba ◽  
Satoko Takase ◽  
Youichi Shimizu
Keyword(s):  




2008 ◽  
Vol 47-50 ◽  
pp. 479-482 ◽  
Author(s):  
Youichi Shimizu ◽  
Satoko Takase ◽  
Daisuke Koba

A new solid-electrolyte impedance-metric NOx sensor device composed of a lithium ionic solid electrolyte: Li1.5Al0.5Ti1.5(PO4)3 (LATP) as a transducer and ceramic oxides (perovskite-type oxides, TiO2, SnO2, etc) as a receptor, respectively, have been systematically investigated for the detection of NOx (NO and NO2 ) in the range 10 – 200 ppm at 400 - 500°C. Responses of the sensors were able to divide component between resistance and capacitance, and it was found that the device was applicable to the selective detection of NO or NO2 concentration in each ingredient. Especially, those using TiO2, SnO2 (n-type semiconductor) and perovskite-type oxides (LaCoO3, LaNiO3 and LaCrO3) based receptors gave good responses to NO and NO2. It was also found that the responses were different between n-type or p-type semiconductors, in which we tried to elucidate the sensing mechanism



2016 ◽  
Vol 680 ◽  
pp. 208-211
Author(s):  
Lian Lian Wu ◽  
Qiang Li ◽  
Dan Yu Jiang ◽  
Jin Feng Xia

In this paper, La0.65Sr0.35MnO3 (LSM) oxide powder with ultrafine structure has been synthesized by self-propagating combustion method. The powders were characterized by X-ray diffraction, scanning electron microscopy and laser size analysis. Compared to the powders prepared by traditional solid-phase method, the grain size of powders prepared by self-propagating combustion method is relatively small and uniform. Starting from ultrafine LSM powders, sensing electrode (SE) for NO2 mixed-potential sensors based on yttria-stablized zirconia (YSZ) was fabricated. As-obtained NO2 sensor displays fast response and high sensitivity (25.4mV/decade). The response values of the sensor have good linear relationship with the logarithm of NO2 concentration varying from 30ppm to 500ppm.Keywords:Self-propagating combustion method; La0.65Sr0.35MnO3; NOx sensor; YSZ



2015 ◽  
Author(s):  
Joe Noto ◽  
Athul Radhakrishnan ◽  
Ye Sun ◽  
Josh Ferreira ◽  
Marc Compere

The combination of increasingly challenging emissions regulations and impending Corporate Average Fuel Economy (CAFE) standards of 54.5 mpg by 2025 presents auto makers with a challenge over the next 10 years. The most promising technologies currently available for meeting high fuel economy and low emissions regulations are increased hybridization, turbo downsizing, and increased Diesel engine implementation. Combining these into a hybrid turbo Diesel is an ideal transition technology for the very near future as battery and other alternative fuels become viable for widespread automotive use. This paper presents a Diesel emission test stand to improve Selective Catalytic Reduction (SCR) systems for light duty Diesel vehicles, particularly hybrid power systems that experience many start-stop events. Advanced modeling and control systems for SCR systems will further reduce tailpipe emissions below existing Tier structures and will prepare manufacturers to meet increasingly stringent Tier 3 standards beginning in 2017. SCR reduces oxides of Nitrogen, NO, and NO2, from otherwise untreated Diesel emissions. Scientific study has proved that inhaling this harmful exhaust gas is directly responsible for some forms of lung cancer and a variety of other respiratory diseases. In addition to EPA Tier emissions levels and CAFÉ standards, the On-Board Diagnostics (OBD) regulations require every vehicle’s emission control systems to actively report their status during all engine-on vehicle operation. Testing and development with production NOx sensors and production SCR components is critical to improving NOx reduction and for OEMs to meeting strict Tier 3 light duty emission standards. The test stand was designed for straightforward access to the NOx sensors, injector, pump and all exhaust components. A Diesel Particulate Filter (DPF) followed by a Diesel Oxidizing Catalyst (DOC) precedes the Selective Catalytic Reducer (SCR) injector, mixing pipe and catalyst. An upstream NOx sensor reads engine-out NOx and the downstream NOx sensor reports the post catalyst NOx levels. Custom fabrication work was required to integrate the SCR mechanical components into a simple system with exhaust components easily accessible in a repeatable, controlled laboratory environment. A Diesel generator was used in combination with a custom designed resistive load bank to provide variable NOx emissions according to the EPA drive cycles. A production exhaust temperature sensor was calibrated and integrated into the software test manager. Production automotive NOx sensors and SCR injector, pump and heaters were mounted on a production light duty vehicle exhaust system. The normalized nature of NOx concentration in parts per million (ppm) allows the small Diesel generator to adequately represent larger Diesels for controls development purposes. Both signal level and power electronics were designed and tested to operate the SCR pump, injector, and three Diesel Exhaust Fluid (DEF) heating elements. An Arduino-based Controller Area Network (CAN) communications network read the NOx Diesel emissions messages from the upstream and downstream sensors. The pump, injector, solenoid, and line heaters all functioned properly during DEF fluid injection. CAN and standard serial communications were used for Arduino and Matlab/Simulink based control and data logging software. Initial testing demonstrated partial and full NOx reduction. Overspray saturated the catalyst and demonstrated the production NOx sensor’s cross-sensitivity to ammonia. The ammonia was indistinguishable from NOx during saturation and motivates incorporation of a separate ammonia sensor.





2020 ◽  
Vol 9 (2) ◽  
pp. 327-335
Author(s):  
Julia Herrmann ◽  
Gunter Hagen ◽  
Jaroslaw Kita ◽  
Frank Noack ◽  
Dirk Bleicker ◽  
...  

Abstract. Due to tightened emission limits, the efficiency of exhaust gas aftertreatment systems has to be further enhanced. Therefore, inexpensive and robust NOx sensors are required to be installed not only in automotive exhausts, but also in any other kind of combustion-based application. In this contribution, an impedimetric NOx sensor is presented. The impedance of a functional thick film (KMnO4, manufactured in a screen-printing technique on planar alumina substrates) depends selectively on the NOx concentration in the exhaust but shows a dependency on the oxygen concentration. Therefore, an additional temperature-independent resistive oxygen sensor structure was integrated on the same sensor platform. BFAT (BaFe0.74Al0.01Ta0.25O3−δ (BaFe0.74Al0.01Ta0.25O3−δ) was used for this purpose, and the measurement was conducted in the dc resistance mode. It serves not only to determine the oxygen concentration in the exhaust, but also to correct the oxygen dependency of the NOx sensor.



2012 ◽  
Author(s):  
L Woo ◽  
R Glass


Author(s):  
Y. Sasago ◽  
H. Nakamura ◽  
T. Odaka ◽  
A. Isobe ◽  
S. Komatsu ◽  
...  


ACS Sensors ◽  
2019 ◽  
Vol 4 (8) ◽  
pp. 2150-2155 ◽  
Author(s):  
Jun Zeng ◽  
Yuli Xu ◽  
Junkan Yu ◽  
Xin Zhang ◽  
Xiaowei Zhang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document