scholarly journals Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

1995 ◽  
Author(s):  
C.M. Rouleau ◽  
D.H. Lowndes ◽  
D.B. Geohegan ◽  
L.F. Allard ◽  
M.A. Strauss ◽  
...  
2011 ◽  
Vol 1305 ◽  
Author(s):  
Ikurou Umezu ◽  
Shunto Okubo ◽  
Akira Sugimura

ABSTRACTThe Si nanocrystal-films are prepared by pulsed laser ablation of Si target in a mixture of helium and hydrogen gas. The total gas pressure and hydrogen partial gas pressure were varied to control structure of nanocrystal-film. The surface of Si nanocrystallite was hydrogenated and degree of hydrogenation increased with increasing hydrogen partial gas pressure. The aggregate structure of nanocrystal-film depended on both the total gas pressure and the hydrogen partial gas pressure. The former and the latter alter spatial confinement of Si species during deposition and the surface hydrogenation of individual nanocrystal, respectively. Spatial confinement increases probability of collision between nanocrystals in the plume. While, surface hydrogenation prevents coalescence of nanocrystals. The individual or aggregated nanocrystals formed in the plume reach the substrate and the nanocrystal-film is deposited on the substrate. The non-equilibrium growth processes during pulsed laser ablation are essential for the formation of the surface structure and the subsequent nanocrystal-film growth. Our results indicate that the structure of nanocrystal-film depends on the probabilities of collision and coalescence between nanocrystals in the plume. These probabilities can be varied by controlling the total gas pressure and the hydrogen partial gas pressure.


1999 ◽  
Vol 14 (2) ◽  
pp. 359-370 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Christopher M. Rouleau ◽  
T.G. Thundat ◽  
G. Duscher ◽  
E.A. Kenik ◽  
...  

The size distributions of Si and ZnTe nanoparticles produced by low energy density ArF (193 nm) pulsed laser ablation into ambient gases were measured as a function of the gas pressure, P, and target-substrate separation, Dts. For both Si and ZnTe, the largest nanoparticles were found closest to the ablation target, and the mean nanoparticle size decreased with increasing Dts. For Si ablation into He, the mean nanoparticle diameter did not increase monotonically with gas pressure but reached a maximum near P = 6 Torr. High resolution Z-contrast transmission electron microscopy and energy loss spectroscopy revealed that ZnTe nanoparticles consist of a crystalline core surrounded by an amorphous ZnO shell; growth defects and surface steps are clearly visible in the crystalline core. A pronounced narrowing of the ZnTe nanocrystal size distribution with increasing Dts also was found. The results demonstrate that the size of laser-ablated nanoparticles can be controlled by varying the molecular weight and pressure of an ambient gas and that nanometer-scale particles can be synthesized. Larger aggregates of both ZnTe and Si having a “flakelike” or “weblike” structure were formed at the higher ambient gas pressures; for ZnTe these appear to be open agglomerates of much smaller (∼10 nm) particles.


1995 ◽  
Vol 397 ◽  
Author(s):  
CM. Rouleau ◽  
D.H. Lowndes ◽  
M.A. Strauss ◽  
S. Cao ◽  
A.J. Pedraza ◽  
...  

ABSTRACTEpitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating GaAs substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film's surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 nm from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity-distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas-controlled variations in these components mirrored trends in electrical properties and microstructural measurements.


2006 ◽  
Vol 100 (5) ◽  
pp. 053305 ◽  
Author(s):  
C. Sánchez Aké ◽  
R. Sanginés de Castro ◽  
H. Sobral ◽  
M. Villagrán-Muniz

2005 ◽  
Vol 98 (12) ◽  
pp. 123301 ◽  
Author(s):  
A. Klini ◽  
A. Manousaki ◽  
D. Anglos ◽  
C. Fotakis

Sign in / Sign up

Export Citation Format

Share Document