scholarly journals A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

1997 ◽  
Author(s):  
D.M. Rue ◽  
A. Fridman ◽  
R. Viskanta ◽  
D. Neff
MTZ worldwide ◽  
2015 ◽  
Vol 76 (10) ◽  
pp. 30-35
Author(s):  
Bertold Hüchtebrock ◽  
José Geiger ◽  
Avnish Dhongde ◽  
Harsh Sankhla

Author(s):  
Кузнецов ◽  
Valeriy Kuznetsov

A mathematical model has been elaborated and a computer simulating program has been made up with the help of which a numerical researches were fulfilled for natural-gas combustion and the heat transfer in a rotary kiln while haydite burning. Its thermal operation was considered to find the best conditions of heat transfer from the diffusion flame to expanding calcined granules.


2020 ◽  
Vol 989 ◽  
pp. 480-485
Author(s):  
German V. Voronov ◽  
Il'ya V. Glukhov

Single pellet heating was considered at natural gas combustion product movement with oxidant flow coefficient of α=1.0 with air and oxygen in unconstrained volume. Physical parameters (density, dynamic and kinematic viscosity) and heat transfer properties (temperature, heat capacity, thermal conductivity, thermal diffusivity) of combustion products correspond to the average composition of gas delivered to the Ural region. Iron-ore pellet average properties were evaluated, based on major pellet plant data. Convection and radiant heat transfer coefficients were determined at pellet heating in natural gas combustion products in a mixture with air and oxygen. It was noted that, at switching to gas burning with oxygen radiant heat transfer to the pellet surface increases significantly, as compared to the convection one.


2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Author(s):  
Amit Gupta ◽  
Xuan Wu ◽  
Ranganathan Kumar

This study discusses the merits of various physical mechanisms that are responsible for enhancing the heat transfer in nanofluids. Experimental studies have cemented the claim that ‘seeding’ liquids with nanoparticles can increase the thermal conductivity of the nanofluid by up to 40% for metallic and oxide nanoparticles dispersed in a base liquid. Experiments have also shown that the rise in conductivity of the nanofluid is highly dependent on the size and concentration of the nanoparticles. On the theoretical side, traditional models like Maxwell or Hamilton-Crosser models cannot explain this unusually high heat transfer. Several mechanisms have been postulated in the literature such as Brownian motion, thermal diffusion in nanoparticles and thermal interaction of nanoparticles with the surrounding fluid, the formation of an ordered liquid layer on the surface of the nanoparticle and microconvection. This study concentrates on 3 possible mechanisms: Brownian dynamics, microconvection and lattice vibration of nanoparticles in the fluid. By considering two nanofluids, copper particles dispersed in ethylene glycol, and silica in water, it is determined that translational Brownian motion of the nanoparticles, presence of an interparticle potential and the microconvection heat transfer are mechanisms that play only a smaller role in the enhancement of thermal conductivity. On the other hand, the lattice vibrations, determined by molecular dynamics simulations show a great deal of promise in increasing the thermal conductivity by as much as 23%. In a simplistic sense, the lattice vibration can be regarded as a means to simulate the phononic transport from solid to liquid at the interface.


2002 ◽  
Vol 125 (1) ◽  
pp. 40-45 ◽  
Author(s):  
K. P. Vanoverberghe ◽  
E. V. Van den Bulck ◽  
M. J. Tummers ◽  
W. A. Hu¨bner

Five different flame states are identified in a compact combustion chamber that is fired by a 30 kW swirl-stabilized partially premixed natural gas burner working at atmospheric pressure. These flame states include a nozzle-attached tulip shaped flame, a nonattached torroidal-ring shaped flame (SSF) suitable for very low NOx emission in a gas turbine combustor and a Coanda flame (CSF) that clings to the bottom wall of the combustion chamber. Flame state transition is generated by changing the swirl number and by premixing the combustion air with 70% of the natural gas flow. The flame state transition pathways reveal strong hysteresis and bifurcation phenomena. The paper also presents major species concentrations, temperature and velocity profiles of the lifted flame state and the Coanda flame and discusses the mechanisms of flame transition and stabilization.


Sign in / Sign up

Export Citation Format

Share Document