scholarly journals Adiabatic Expansion Of High Explosive Detonation Products

Author(s):  
E. L. Lee ◽  
H. C. Hornig ◽  
J. W. Kury
2017 ◽  
Vol 88 (5) ◽  
pp. 1327-1332 ◽  
Author(s):  
Anastasia Stroujkova ◽  
Mark Leidig ◽  
James Lewkowicz ◽  
Timothy Rath ◽  
Timothy Bradstreet ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5935
Author(s):  
Steve Gilbertson ◽  
Mark Pickrell ◽  
Dario Castano ◽  
Gary Salazar ◽  
Tom Beery ◽  
...  

Dynamic elastic strain in ~1.8 and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings. The all-optical method, called real-time localized strain measurement, recorded the strain for 10 ms after detonation with additional measurements being sequentially made at a rate of 1.7 MHz. A swept wavelength laser source provided the repetition rate necessary for such high-speed measurements while also providing enough signal strength and bandwidth to simultaneously measure 8 or more unique points on the vessel’s surface. The data presented here arethen compared with additional diagnostics consisting of a fast spectral interferometer and an optical backscatter reflectometer to show a comparison between the local and global changes in the vessel strain, both dynamically and statically to further characterize the performance of the localized strain measurement. The results are also compared with electrical resistive strain gauges and finite element analysis simulations.


2010 ◽  
Vol 56 (199) ◽  
pp. 747-757 ◽  
Author(s):  
Andrei V. Kurbatov ◽  
Paul A. Mayewski ◽  
Jorgen P. Steffensen ◽  
Allen West ◽  
Douglas J. Kennett ◽  
...  

AbstractWe report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5×106 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 ± 0.1 ka. However, more investigation is needed to confirm this association.


Author(s):  
Stephen A. Andrews ◽  
Andrew M. Fraser ◽  
Scott I. Jackson ◽  
Eric K. Anderson

Abstract The extreme pressures and temperatures of the gas produced by detonating a High Explosive (HE) make it difficult to use experimental measurements to estimate the Equation Of State (EOS), the physics model that relates pressure, temperature, and density of the gas. Instead of measuring pressure directly one measures effects like the acceleration of metals driven by the HE. Typically one fits a few free parameters in a fixed functional form to measurements from a single experiment. The present work uses the optimization tool F_UNCLE to incorporate data from multiple experiments into a single EOS model for the gas produced by detonating the explosive PBX 9501. The model is verified by comparison to an experiment from outside the set of calibration data. The uncertainty in the EOS is also is examined to determine how each calibration experiment constrains the model and how the uncertainty arising from all calibration experiments affects predictions. This work identifies an EOS for HE detonation products and uncertainty about the EOS.


Sign in / Sign up

Export Citation Format

Share Document