scholarly journals Discovery of a nanodiamond-rich layer in the Greenland ice sheet

2010 ◽  
Vol 56 (199) ◽  
pp. 747-757 ◽  
Author(s):  
Andrei V. Kurbatov ◽  
Paul A. Mayewski ◽  
Jorgen P. Steffensen ◽  
Allen West ◽  
Douglas J. Kennett ◽  
...  

AbstractWe report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5×106 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 ± 0.1 ka. However, more investigation is needed to confirm this association.

2020 ◽  
Vol 14 (12) ◽  
pp. 4475-4494
Author(s):  
Ingrid Leirvik Olsen ◽  
Tom Arne Rydningen ◽  
Matthias Forwick ◽  
Jan Sverre Laberg ◽  
Katrine Husum

Abstract. The presence of a grounded Greenland Ice Sheet on the northeastern part of the Greenland continental shelf during the Last Glacial Maximum is supported by new swath bathymetry and high-resolution seismic data, supplemented with multi-proxy analyses of sediment gravity cores from Store Koldewey Trough. Subglacial till fills the trough, with an overlying drape of maximum 2.5 m thick glacier-proximal and glacier-distal sediment. The presence of mega-scale glacial lineations and a grounding zone wedge in the outer part of the trough, comprising subglacial till, provides evidence of the expansion of fast-flowing, grounded ice, probably originating from the area presently covered with the Storstrømmen ice stream and thereby previously flowing across Store Koldewey Island and Germania Land. Grounding zone wedges and recessional moraines provide evidence that multiple halts and/or readvances interrupted the deglaciation. The formation of the grounding zone wedges is estimated to be at least 130 years, while distances between the recessional moraines indicate that the grounding line locally retreated between 80 and 400 m yr−1 during the deglaciation, assuming that the moraines formed annually. The complex geomorphology in Store Koldewey Trough is attributed to the trough shallowing and narrowing towards the coast. At a late stage of the deglaciation, the ice stream flowed around the topography on Store Koldewey Island and Germania Land, terminating the sediment input from this sector of the Greenland Ice Sheet to Store Koldewey Trough.


2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

2013 ◽  
Vol 7 (6) ◽  
pp. 1901-1914 ◽  
Author(s):  
W. Colgan ◽  
S. Luthcke ◽  
W. Abdalati ◽  
M. Citterio

Abstract. We use a Monte Carlo approach to invert a spherical harmonic representation of cryosphere-attributed mass change in order to infer the most likely underlying mass changes within irregularly shaped ice-covered areas at nominal 26 km resolution. By inverting a spherical harmonic representation through the incorporation of additional fractional ice coverage information, this approach seeks to eliminate signal leakage between non-ice-covered and ice-covered areas. The spherical harmonic representation suggests a Greenland mass loss of 251 ± 25 Gt a−1 over the December 2003 to December 2010 period. The inversion suggests 218 ± 20 Gt a−1 was due to the ice sheet proper, and 34 ± 5 Gt a−1 (or ~14%) was due to Greenland peripheral glaciers and ice caps (GrPGICs). This mass loss from GrPGICs exceeds that inferred from all ice masses on both Ellesmere and Devon islands combined. This partition therefore highlights that GRACE-derived "Greenland" mass loss cannot be taken as synonymous with "Greenland ice sheet" mass loss when making comparisons with estimates of ice sheet mass balance derived from techniques that sample only the ice sheet proper.


Author(s):  
Michele Citterio ◽  
Dirk Van As ◽  
Andreas P. Ahlstrøm ◽  
Morten L. Andersen ◽  
Signe B. Andersen ◽  
...  

Since the early 1980s, the Geological Survey of Denmark and Greenland (GEUS) glaciology group has developed automatic weather stations (AWSs) and operated them on the Greenland ice sheet and on local glaciers to support glaciological research and monitoring projects (e.g. Olesen & Braithwaite 1989; Ahlstrøm et al. 2008). GEUS has also operated AWSs in connection with consultancy services in relation to mining and hydropower pre-feasibility studies (Colgan et al. 2015). Over the years, the design of the AWS has evolved, partly due to technological advances and partly due to lessons learned in the fi eld. At the same time, we have kept the initial goal in focus: long-term, year-round accurate recording of ice ablation, snow depth and the physical parameters that determine the energy budget of glacierised surfaces. GEUS has an extensive record operating AWSs in the harsh Arctic environment of the diverse ablation areas of the Greenland ice sheet, glaciers and ice caps (Fig. 1). Th e current GEUS-type AWS (Fig. 2) records meteorological, surface and sub-surface variables, including accumulation and ablation, as well as for example ice velocity. A large part of the data is transmitted by satellite near real-time to support ongoing applications, fi eld activities and the planning of maintenance visits. Th e data have been essential for assessing the impact of climate change on land ice. Th e data are also crucial for calibration and validation of satellite-based observations and climate models (van As et al. 2014).


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


1996 ◽  
Vol 42 (141) ◽  
pp. 364-374 ◽  
Author(s):  
Wouter H. Knap ◽  
Johannes Oerlemans

AbstractThe temporal and spatial variation in the surface albedo of the Greenland ice sheet during the ablation season of 1991 is investigated. The study focuses on an area east of Søndre Strømfjord measuring 200 km by 200 km and centred at 67°5′ N, 48° 13′W. The analysis is based on satellite radiance measurements carried out by the Advanced Very High Resolution Radiometer (AVHRR). The broad-band albedo is estimated from the albedos in channel 1 (visible) and channel 2 (near-infrared). The results are calibrated with the surface albedo of sea and dry snow.Satellite-derived albedos are compared with GIMEX ground measurements at three stations. There is a high degree of consistency in temporal variation at two of the three stations. Large systematic differences are attributed to albedo variations on sub-pixel scale.In the course of the ablation season four zones appear, each parallel to the ice edge. It is proposed that these are, in order of increasing altitude: (I) clean and dry ice, (II) ice with surface water, (III) superimposed ice, and (IV) snow. An extensive description of these zones is given on the basis of the situation on 25 July 1991. Zones I, III and IV reveal fairly constant albedos (0.46, 0.65 and 0.75 on average), whereas zone II is characterised by an albedo minimum (0.34). Survey of the western margin of the Greenland ice sheet (up to 71° N) shows that the zonation occurs between 66° and 70° N.


1984 ◽  
Vol 5 ◽  
pp. 115-121 ◽  
Author(s):  
N. Reeh

A three-dimensional perfectly plastic ice-sheet model, developed for determining the surface elevations and the flow pattern of an ice sheet with given bottom topography and ice-margin positions, is applied to the reconstruction of the glacial ice covers of Greenland and the Canadian Arctic islands. In the northern regions, two different reconstructions have been performed with ice margins along the present 600 and 200 m sea-depth contours, respectively. In central Greenland, the ice margin is considered to be at the outermost ice-margin deposits on the coastal shelf to the west, and at the present 200 m sea-depth contour to the east.The main conclusions to be drawn from the reconstructions are: (1). The flow pattern of the glacial ice cover of Greenland shows a great resemblance to the present one, the central ice divide being displaced less than 50 km from its present position and being no more than 200 m higher than today. (2). The main ice divide of the ice sheet covering the Canadian Arctic islands (the Innuitian ice sheet) was located over the highlands of eastern Ellesmere Island with local domes positioned over the present ice caps, indicating that even the deep ice of Wisconsin age in these ice caps is of local origin. This is also the case for the Devon Island ice cap. (3). Even in the not very likely case of a rather extensive glacial ice cover in north-west Greenland, the ice-flow pattern upstream of the Camp Century deep drill site would not have changed radically compared to the present flow pattern. Thus it is concluded that even advanced ice margins in late-Wisconsin time could at most have resulted in an elevation of the deposition site of the late-Wisconsin ice at Camp Century 600 m higher than at present. The consequences of this conclusion are discussed.


1996 ◽  
Vol 42 (141) ◽  
pp. 364-374 ◽  
Author(s):  
Wouter H. Knap ◽  
Johannes Oerlemans

AbstractThe temporal and spatial variation in the surface albedo of the Greenland ice sheet during the ablation season of 1991 is investigated. The study focuses on an area east of Søndre Strømfjord measuring 200 km by 200 km and centred at 67°5′ N, 48° 13′W. The analysis is based on satellite radiance measurements carried out by the Advanced Very High Resolution Radiometer (AVHRR). The broad-band albedo is estimated from the albedos in channel 1 (visible) and channel 2 (near-infrared). The results are calibrated with the surface albedo of sea and dry snow.Satellite-derived albedos are compared with GIMEX ground measurements at three stations. There is a high degree of consistency in temporal variation at two of the three stations. Large systematic differences are attributed to albedo variations on sub-pixel scale.In the course of the ablation season four zones appear, each parallel to the ice edge. It is proposed that these are, in order of increasing altitude: (I) clean and dry ice, (II) ice with surface water, (III) superimposed ice, and (IV) snow. An extensive description of these zones is given on the basis of the situation on 25 July 1991. Zones I, III and IV reveal fairly constant albedos (0.46, 0.65 and 0.75 on average), whereas zone II is characterised by an albedo minimum (0.34). Survey of the western margin of the Greenland ice sheet (up to 71° N) shows that the zonation occurs between 66° and 70° N.


1991 ◽  
Vol 90 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Anne Letréguilly ◽  
Niels Reeh ◽  
Philippe Huybrechts

Sign in / Sign up

Export Citation Format

Share Document