scholarly journals Wind energy conversion. Volume V. Experimental investigation of a horizontal axis wind turbine

1978 ◽  
Author(s):  
J Dugundji ◽  
E Larrabee ◽  
P Bauer
Author(s):  
Hagninou E. V. Donnou ◽  
Drissa Boro ◽  
Jean Noé Fabiyi ◽  
Marius Tovoeho ◽  
Aristide B. Akpo

In the present work, the study and design of a horizontal axis wind turbine suitable for the Cotonou site were investigated on the coast of Benin. A statistical study using the Weibull distribution was carried out on the hourly wind data measured at 10 m from the ground by the Agency for Air Navigation Safety in Africa and Madagascar (ASECNA) over the period from January 1981 to December 2014. Then, the models, techniques, tools and approaches used to design horizontal axis wind turbines were presented and the wind turbine components characteristics were determined. The numerical design and assembly of these components were carried out using SolidWorks software. The results revealed that the designed wind turbine has a power of 571W. It is equipped with a permanent magnet synchronous generator and has three aluminum blades with NACA 4412 biconvex asymmetrical profile. The values obtained for the optimum coefficient of lift and drag are estimated at 1.196 and 0.0189 respectively. The blades are characterised by an attack optimum angle estimated at 6° and the wedge angle at 5°. Their length is 2.50 m and the maximum thickness is estimated at 0.032 m for a rope length of 0.27 m. The wind turbine efficiency is 44%. The computer program designed on SolidWorks gives three-dimensional views of the geometrical shape of the wind turbine components and their assembly has allowed to visualize the compact shape of the wind turbine after export via its graphical interface. The energy quantity that can be obtained from the wind turbine was estimated at 2712,718 kWh/year. This wind turbine design study is the first of its kind for the study area. In order to reduce the technological dependence and the import of wind energy systems, the results of this study could be used to produce lower cost wind energy available on our study site.


2021 ◽  
Vol 321 ◽  
pp. 03004
Author(s):  
Shalini Verma ◽  
Akshoy Ranjan Paul ◽  
Anuj Jain ◽  
Firoz Alam

Wind energy is one of the renewable energy resources which is clean and sustainable energy and the wind turbine is used for harnessing energy from the wind. The blades are the key components of a wind turbine to convert wind energy into rotational energy. Recently, wingtip devices are used in the blades of horizontal axis wind turbine (HAWT), which decreases the vortex and drag, while increases the lift and thereby improve the performance of the turbine. In the present study, a winglet is used at the tip of an NREL phase VI wind turbine blade. Solidworks, Pointwise, and Ansys-Fluent are used for geometric modeling, computational grid generation, and CFD simulation, respectively. The computational result obtained using SST k-ω turbulence modeling is well validated with the experimental data of NREL at 5 and 7 m/s of wind speeds. Numerical investigation of stall characteristics is carried out for wingleted blade at higher turbulence intensity (21% and 25%) and angle of attack (00 to 300 at 50 intervals) at 7 m/s wind speed. The result found that wingletd blade delay stall to 150 for both the cases of turbulence intensity. Increasing the turbulence intensity increases the lift coefficient at stall angle but drag coefficient also increases and thus a lower aerodynamic performance (CL/CD ratio = 13) is obtained. Wingleted blade improves the performance as the intensity of vortices is smaller compared to baseline blade


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5809
Author(s):  
Tania García-Sánchez ◽  
Arbinda Kumar Mishra ◽  
Elías Hurtado-Pérez ◽  
Rubén Puché-Panadero ◽  
Ana Fernández-Guillamón

Currently, wind power is the fastest-growing means of electricity generation in the world. To obtain the maximum efficiency from the wind energy conversion system, it is important that the control strategy design is carried out in the best possible way. In fact, besides regulating the frequency and output voltage of the electrical signal, these strategies should also extract energy from wind power at the maximum level of efficiency. With advances in micro-controllers and electronic components, the design and implementation of efficient controllers are steadily improving. This paper presents a maximum power point tracking controller scheme for a small wind energy conversion system with a variable speed permanent magnet synchronous generator. With the controller, the system extracts optimum possible power from the wind speed reaching the wind turbine and feeds it to the grid at constant voltage and frequency based on the AC–DC–AC conversion system. A MATLAB/SimPowerSystems environment was used to carry out the simulations of the system. Simulation results were analyzed under variable wind speed and load conditions, exhibiting the performance of the proposed controller. It was observed that the controllers can extract maximum power and regulate the voltage and frequency under such variable conditions. Extensive results are included in the paper.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


2019 ◽  
Vol 239 ◽  
pp. 1356-1370 ◽  
Author(s):  
Jie Yan ◽  
Hao Zhang ◽  
Yongqian Liu ◽  
Shuang Han ◽  
Li Li

Sign in / Sign up

Export Citation Format

Share Document