scholarly journals Data base for district heating pipe system design

1979 ◽  
Author(s):  
R Lesse ◽  
J Karkheck ◽  
H Serry ◽  
R Tessmer
1999 ◽  
Vol 5 (5) ◽  
pp. 318-322
Author(s):  
Edvardas Tuomas ◽  
Saulius Neverbickas

The majority of dwellings in Lithuania are situated in blocks of flats. The dwellings were built after World War II and they are heated by single pipe central heating systems, connected to district heating. The dwellers are not quite satisfied with such a heating system and try to improve it, but do that in a wrong way, by increasing the surface of radiators. Such means lead to violation of thermal regime and comfort conditions for other dwellers. There exists sometimes the necessity of reconstructing premises and together—the heating system. During the reconstruction the primary heat fluxes from radiators should be known, but very often such data are lost and only the size of radiators (number of sections) are known. To reconstruct the required primary data for single pipe systems is complicated because the temperatures of inlet and outlet water for radiators are unknown. In this article the methodology is proposed how to perform the calculations leading to the required data. The aim of calculations is the establishment of heat fluxes from each radiator connected to the riser. Heat flux from radiator can be calculated according the formula (1) but the complex coefficient is unknown. It could be found from formulae (2) but some magnitudes are unknown. According to the proposed methodology the values of unknown magnitudes are taken approximately and calculations are performed with iterations. In such a way the flow rate of water in riser is established from formula (3), which is the same for each radiator (the property of single pipe system). From formulas (3) and (4) an equation is produced (5), and is used for calculations of unknown temperatures. The equation (6) is used for calculation of heat fluxes from radiators. To carry out the above-mentioned calculations without computer practically is impossible due to many cycles of iteration. The programme was prepared to make easy all these calculations. The scheme of algorithm of programme is given in Fig 1. An example of calculation is given in this article. Calculations were fulfilled by newly created programme. The riser chosen for calculation is shown in Fig 2. The results of calculation are given in Table 1. The table shows that according to the proposed methodology the programme based on it can be used for reconstruction of primary data of single pipe heating systems successfully.


Author(s):  
Hirofumi Ohashi ◽  
Hiroyuki Sato ◽  
Yujiro Tazawa ◽  
Xing L. Yan ◽  
Yukio Tachibana ◽  
...  

Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR for steam supply and electricity generation (HTR50S) to deploy the high temperature gas cooled reactor (HTGR) in developing countries at an early date (i.e., in the 2030s). Its reactor power is 50MWt and the reactor outlet temperature is 750°C. It is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and the district heating, and electricity generation using a steam turbine. The design philosophy of the HTR50S is to upgrade the performance from the Japanese first HTGR (HTTR) and to reduce the cost for the commercialization by utilizing the knowledge obtained by the HTTR operation and the design of an advanced commercial plant of 600 MWt-class Very High Temperature Reactor (GTHTR300 series). The major specifications of the HTR50S were determined based on its design philosophy. And the targets of the technology demonstration using the HTR50S for the future commercial small-sized HTGR were identified. The system design of HTR50S was performed to offer the capability of electricity generation, cogeneration of electricity and steam for a district heating and industries. The market potential for the small-sized HTGR in the developing countries was evaluated for the application of the electricity, process heat, district heating and pure water production. It was confirmed that there is enough market potential for the small-sized HTGR in the developing countries. This paper described the major specification and system design of the HTR50S and the market potential for the small-sized HTGR in the developing countries.


Author(s):  
Jaspreet S. Nijjar ◽  
Alan S. Fung ◽  
Larry Hughes ◽  
Hessam Taherian

There are several benefits to district heating systems. The system design requires knowledge of community peak heating load and annual heating energy requirements. For this purpose, a residential energy model was developed using several energy usage databases. Hourly, peak, and annual heating demands were estimated by simulating 15 archetype houses using an hour-by-hour building simulation program, ENERPASS. Estimated heating profiles from model houses were used to design a district heating system for a hypothetical rural community in Nova Scotia. The findings show that building simulation is a very flexible and valuable tool in identifying the required peak and hourly energy demand of a community for the design of district energy system, and biomass district heating system can reduce community greenhouse gas emissions.


2006 ◽  
Vol 38 (9) ◽  
pp. 1111-1119 ◽  
Author(s):  
Nurdan Yıldırım ◽  
Macit Toksoy ◽  
Gülden Gökçen

Author(s):  
Nicholas P. Cheremisinoff ◽  
Paul N. Cheremisinoff
Keyword(s):  

Author(s):  
David Walter ◽  
Philipp Klingel

Abstract This paper presents a novel water supply system to distribute limited water resources with varying quantity. The system enables a controlled, planned and, thus, fair distribution of the water availability independently from the consumption patterns. The system input is transported by gravitation through a branched pipe system to decentralised storage tanks. Each storage tank is allocated to a supply unit which comprises several consumers and, possibly, distribution structures connecting the consumers and the tank. At every junction the water is divided by a distribution tank with several chambers that are separated by weir overflows. Water that is not consumed is redistributed in the system automatically. The concept, the components, planning criteria and system design as well as the system modelling are described within the paper. The application of the solution in a supply area located in northern Vietnam is outlined.


Sign in / Sign up

Export Citation Format

Share Document