Conceptual Design of Small-Sized HTGR System for Steam Supply and Electricity Generation (HTR50S)

Author(s):  
Hirofumi Ohashi ◽  
Hiroyuki Sato ◽  
Yujiro Tazawa ◽  
Xing L. Yan ◽  
Yukio Tachibana ◽  
...  

Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR for steam supply and electricity generation (HTR50S) to deploy the high temperature gas cooled reactor (HTGR) in developing countries at an early date (i.e., in the 2030s). Its reactor power is 50MWt and the reactor outlet temperature is 750°C. It is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and the district heating, and electricity generation using a steam turbine. The design philosophy of the HTR50S is to upgrade the performance from the Japanese first HTGR (HTTR) and to reduce the cost for the commercialization by utilizing the knowledge obtained by the HTTR operation and the design of an advanced commercial plant of 600 MWt-class Very High Temperature Reactor (GTHTR300 series). The major specifications of the HTR50S were determined based on its design philosophy. And the targets of the technology demonstration using the HTR50S for the future commercial small-sized HTGR were identified. The system design of HTR50S was performed to offer the capability of electricity generation, cogeneration of electricity and steam for a district heating and industries. The market potential for the small-sized HTGR in the developing countries was evaluated for the application of the electricity, process heat, district heating and pure water production. It was confirmed that there is enough market potential for the small-sized HTGR in the developing countries. This paper described the major specification and system design of the HTR50S and the market potential for the small-sized HTGR in the developing countries.

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Hirofumi Ohashi ◽  
Hiroyuki Sato ◽  
Minoru Goto ◽  
Xing Yan ◽  
Junya Sumita ◽  
...  

Japan Atomic Energy Agency has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR) for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750°C and 900°C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to be deployed in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat applications such as the district heating and process heat supply based on the steam turbine system and the demonstration of the power generation by helium gas turbine and the hydrogen production using the water splitting iodine-sulfur process, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system. The evaluation of technical feasibility shows that all design targets were satisfied by the design of each system and the preliminary safety analysis. This paper describes the conceptual design and the preliminary safety analysis of HTR50S.


Author(s):  
Xing L. Yan ◽  
Hiroyuki Sato ◽  
Hirofumi Ohashi ◽  
Yukio Tachibana ◽  
Kazuhiko Kunitomi

GTHTR300C is a small modular reactor based on a 600 MWt high temperature gas reactor (HTGR) and intended for a number of cogeneration applications such as process heat supply, hydrogen production, steelmaking, desalination in addition to power generation. The basic design has been completed by JAEA together with Japanese heavy industries. The reactor design and key plant technologies have been validated through test reactor and equipment verification. Future development includes demonstration programs to be performed on a 50 MWt system HTR50S. The demonstration programs are implemented in three steps. In the first step, a base commercial plant for heat and power is to be constructed of the same fuel proven in JAEA’s successful 950°C, 30 MWt HTGR test reactor and a conventional steam turbine such that the construction can readily proceed without major development requirement and risk. Beginning in the second step, a new fuel presently being developed at JAEA is expected to be available. With this fuel, the core outlet temperature is raised to 900°C for purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. Added in the final step is a thermochemical process to demonstrate nuclear-heated hydrogen production via water decomposition. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The designs of GTHTR300C and HTR50S will be presented and the demonstration programs will be described.


2021 ◽  
Vol 151 ◽  
pp. 107983
Author(s):  
Lianjie Wang ◽  
Wei Sun ◽  
Bangyang Xia ◽  
Yang Zou ◽  
Rui Yan

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


1983 ◽  
Vol 7 (4) ◽  
pp. 311-320
Author(s):  
SATORU MURAI ◽  
AKIRA KINOSHITA

2020 ◽  
Vol 9 (5) ◽  
pp. 9972-9984 ◽  
Author(s):  
I. López-Ferreño ◽  
J.F. Gómez-Cortés ◽  
T. Breczewski ◽  
I. Ruiz-Larrea ◽  
M.L. Nó ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1981
Author(s):  
Florian Kretschmer ◽  
Bernd Hrdy ◽  
Georg Neugebauer ◽  
Gernot Stoeglehner

To counteract climate change, the application of renewable energy sources and their efficient use are of crucial importance. In this context, wastewater has also gained increased attention in recent years. For decades, wastewater treatment plants have applied the heat from digester gas combustion to supply internal demands. However, in the context of efficient energy use the question arises: can using high temperature heat for supplying low temperature demand still be considered the best option? This article presents an innovative approach to covering wastewater treatment plant (WWTP) internal demand with low temperature wastewater heat recovery, making thermal energy from digester gas combustion available for feed-in to a local high temperature district heating network. The presented feasibility study was carried out in an Austrian municipality and investigates the heat balance, the economic risk, climatic benefits and the social aspects of the suggested approach. The practical implementation of the novel approach was planned in two steps. First, the WWTP should be connected to the district heating network to enable the feed-in of excess heat. Second, the WWTP internal heat supply should be modified and based on wastewater heat recovery from the effluent. Due to the promising results of the feasibility study, the first step was realized in summer 2020. The second and final step was initiated in 2021.


2021 ◽  
Author(s):  
◽  
Jasmine Edwards

<p>New Zealand’s aid investment in dairy development is seen, on the one hand, as a means to improve economic, health and food security issues in developing countries. Dairy development, further, is linked to New Zealand’s trade interests and supports industry expansion strategies that target the market potential in developing countries. On the other hand, it is argued that dairy consumption and production should be reduced to respond to climate change and potential negative health impacts in countries with traditionally low dairy consumption. The potential impacts of dairy development on sustainable development are complex, interconnected and contradictory. Moreover, local and gendered understandings of the impacts of dairy development are underrepresented in literature.   Drawing on a sustainable livelihood approach and gender lens as a theoretical framework, this research explores smallholder farmers’ views through a case study of a New Zealand-funded aid project in Sri Lanka, the Wanni Dairy Project, which is increasing dairy production to improve rural livelihoods. In doing so, this thesis considers the multiple impacts of dairy development on sustainable livelihoods. In particular, it explores understandings of social, gender and environmental factors. Data was collected during five weeks of qualitative, case study research (using interviews, photovoice and observation methods) with female, conflict-affected farmers in Sri Lanka and stakeholders in dairy development.   This thesis contends that better understandings of the impacts of dairy development and aid can be valuably informed by local perspectives. It highlights the inherent connectivity between social, environmental and economic factors of the Wanni Dairy Project, and areas of dissonance between local understandings of the impacts of dairy development and global discourse on sustainable development. Specifically, this thesis draws attention to the diverse impacts of increasing income, health factors, and cultural and religious factors; it highlights women’s independence, empowerment and agency, and ongoing inequities; and it addresses environmental impacts, climate change, and the implications of scale. This research, therefore, contributes to the information upon which development policy-makers and practitioners – government, development organisations and private sector actors – can base effective and sustainable development policy and practice.</p>


1964 ◽  
Author(s):  
James F. Spitzer ◽  
Jr Robertson ◽  
Neuse Joseph G. ◽  
Durwood H.

Sign in / Sign up

Export Citation Format

Share Document